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MOTIVATION COPULA FUNCTIONS

Southeastern Australia is a fire-prone region [1], with a landscape Forest, savannas, and grasslands classes were studied separately. Gaussian, Frank, Clayton, Gumbel, and Joe models were fitted. Mo-

characterized by high values of vegetation productivity [1], and a Source Monthly BA was computed for October to March, for 2000-2022. dels were discarded if they showed a poor goddness-of-fit, based

temperate climate [2]. This reg!on |t5 recurrently affected bY droughts Burrad Ares SPE| was comouted at the time scales of 1 3, 6, 8, and 12
[3] and heatwaves [4]. Large fires in southeastern Australia tend to MCD64A1 6.1  2000-2022  monthly

. » (BA) months for the period 1950-2022.
occur in years classified as hot and dry [5], such as the Black Satur- and MCD12Q1 6.1 2001-2091 | | | B
day (2009) and the Black Summer (2019-2020) extreme fires. Posi- ane EOREt ' _ annta Daily maximum and minimum temperatures (Tmax and Tmin) were

i i i ifi - i Mean CRU TS4.07 : computed for the period 1950-2022.
tive trends in BA have been identified at the continental scale and in 1901-2022  monthly P P

forests [6], and some regions present an increase in BA associated Temperature For each burned pixel, SPEI, Tyaxand T, Were retrieved.
with an increase in drought conditions and in T,.x [7]. Moreover, for- Precipitation CRUTS4.07  1901-2022  monthly

on the Cramér-von Mises test (a=0.1). Bayesan Information Crite-
rion was used to chose the model.

The uncertainties were assessed by sampling 1000 times the chosen
model, with a sample size the same as the number of observations,
and then computing the copula parameter for each sample. If the
parameters obtained with the observations fell outside the 95%

m A monthly average of SPEl was computed, for concurrent confidence interval of the simulations, the model was discarded.

ested areas in eastern Australia present a decrease in the number of - , ERAS 1950-2022  hourly . drought conditions (lag 0) and on the previous 1 to 3 months (lag
. . emperature
years since the last fire [6]. . 1 to 3)

OBJECTIVE

To assess the relationship between BA and climate conditions in three different land covers in southeas-

10,000 simulated points were derived from the chosen copula mo-
del.

Conditional probablities of BA larger than the 50" and 80" percenti-
le were computed, given drought and hot conditions.

The maximum T,., and T,;, were retrieved for the concurrent

and the previous 30 days.

A Pearson correlation analysis was performed between log;o(BA
v ; 810(BA) Three classes of drought intensity and three temperature percenti-

and the climate variables (a=0.1). les were considered
W | .

tern Australia, namely forests, grasslands, and savannas, with correlations and bivariate copula functions.
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