

User-friendly atmospheric blocking detection algorithm helps identification of extreme events

Dhefeus & AIClimate@EU 1st workshop

November 13th, 2024

Miguel M. Lima

Sousa, P. M, Fuentes-Alvarez, T., Ordoñez, C., García-Herrera, R., Barriopedro, D., Soares, P. M., Trigo, R. M. **Extreme weather events** are among the <u>deadliest</u> and <u>costliest</u> natural hazards...

Southern Europe 2022 drought, Galicia, Spain. Source: <u>NBC news</u>

Extreme weather events are among the <u>deadliest</u> and <u>costliest</u> natural hazards...

Temperature and **hydrological** extremes are the most impactful continent-wide, with wind- and snow-storms substantially affecting focused regions...

What do these example have in common?

Large-scale dynamic patterns were the main drivers for the prolonged intensity of these events. How so...?

The global circulation can be divided in 3 major latitudinal areas:

Marking the division between these latitudes, major <u>jet streams</u> are present: The **subtropical** and **polar** jet streams.

These jets can remain stable, modulated by low- and high-pressure systems:

Low pressure: L High pressure: H

Often, they are disturbed by these systems or other factors, increasing the instability:

Low pressure: L High pressure: H

These instabilities can create wave breaking events, leaving large systems:

High pressure: H

These systems can form in different morphologies and affect areas the size of a continent:

Low pressure: L High pressure: H

Surface impacts can be varied, including weather extremes:

Surface impacts can be varied, including weather extremes:

Identification methods: Sousa et al. (2021)

- Z500 gradient methodology;
- Tracks event life-cycle;
- Assimilates low-latitude flow obstructions;
- Can differentiate between different types.

Algorithm overview: Subtropical ridges

b) Subtropical Ridge Subtropical Ridge a) Day N-15 ---> Day N-1 Jetstream 15 15° LAT .. LAT 2000-07-02 HIGH HIGH 90 80 70 5150 m □ 90° 2000-07-03 60 Latitude [°] 05 70 5785 m 43° ► 30 20 5850 m 0° Longitudinal mean Savitzky-Golay filter 10 Weighted mean: 5785 m Field mean of 15 days before: $\overline{[Z500]}$ 5600 5700 5800 5900 5500 Geopotential height [m]

Algorithm overview: Subtropical ridges

Day N-15 ---> Day N-1

Subtropical ridges are the areas the isoline exceeds the LATmin

- A point is considered blocked if its meridional flanks have lower Z500.
- It can be considered Omega if the southern flank has a weak Z500 gradient.

From algorithm to software: BLOCS

Available on GitHub!

Also scannable on poster outside.

<u>Blocking Location and Obstruction Cataloguing System</u>

From algorithm to software: BLOCS

<u>Blocking Location and Obstruction Cataloguing System</u>

Available on GitHub! Also scannable on poster outside.

Framework to identify extreme events

Field composites of ridge/blocked conditions

- In western Europe, ridges typically produce drier and warmer weather.
- Inversely, blocked conditions produce wetter and colder days on average.
- Location of impacts is dependent on specific events.

Surface impacts of Ridges/Blocks in Western Europe

Framework to identify extreme events

Individual extreme weather events: 2003 European heatwave

Field composites of blocked/ridge conditions

Surface impacts of Ridges/Blocks in Western Europe

➢ Hottest summer since at least 1540.

Source: Sousa et al. (2021)

Frameworks to identify extreme events

Individual extreme weather events: 2003 European heatwave

- Hottest summer since at least 1540. Death toll upwards of 72000.
- Surge in temperatures influenced the tragic wildfire season in Portugal and drought conditions in most of Europe.

The bigger picture:

Temperature extreme events

Type of extreme	Date	Affected region	Blocking region	Damage	References
Heat	Summer 1976	Western Europe	SCAN	23 000 fatalities (in England alone in the first 2 weeks)	Green (1977), Ellis et al. (1980)
	Summer 2003	Central, western Europe	EU (central)	70 000 fatalities, losses of EUR 13 billion	De Bono et al. (2004), Miralles et al. (2014), Kron et al. (2019)
	Summer 2010	Eastern Europe, western Russia	SUBTROP, EU, URAL	55 000 fatalities, losses of EUR 13 billion	Barriopedro et al. (2011), Grumm (2011)
	Summer 2013	Austria, Slovenia	SUBTROP	4 fatalities (alone in Austria)	Lassnig et al. (2014), Lhotka and Kysely (2015)
	Summer 2018	Scandinavia, Ger- many, France	SCAN	EUR 456 million crop damage (in Germany and Sweden)	Bastos et al. (2020), Spensberger et al. (2020)
Cold	Winter 1941-1942	Europe	EU	260 000 fatalities (also related to war)	Lejenäs (1989)
	Winter 2009-2010	Western, northern Europe	N-ATL	280 fatalities ¹	Cattiaux et al. (2010), Seager et al. (2010), Wang et al. (2010)
	February 2012	Europe	N-ATL, EU	650 fatalities	DWD (2012), de Vries et al. (2013), Planchon et al. (2015)
	January 2017	Balkan Peninsula	SCAN	38 fatalities ²	Anagnostopoulou et al. (2017)
	March 2018	Europe	N-ATL, SCAN	80 fatalities ³	Karpechko et al. (2018), Ferranti et al. (2019)

Hydrological extreme events

Type of extreme	Date	Affected region	Blocking region	Damage	References
Droughts	Summer 2003	Central, western Europe	EU (central)	70 000 fatalities, losses of EUR 13 billion	Beniston and Diaz (2004), Ogi et al. (2005), García-Herrera et al. (2010), Kron et al. (2019)
	2004-2005	Iberian Peninsula	N-ATL	EUR 1 billion crop damage ¹	Garcia-Herrera et al. (2007)
	2010	Eastern Europe, western Russia	SUBTROP, EU, URAL	55 000 fatalities, losses of EUR 13 billion	Barriopedro et al. (2011), Lau and Kim (2012)
	2016-2017	Central, western Europe	SUBTROP	losses of EUR 5.8 billion	Aon (2018), García-Herrera et al. (2019)
storm spool	May 2018	Central, eastern Europe	EU (north)	losses of EUR 380 million	Mohr et al. (2020)
	1954	Upper Danube	N-ATL (west)	losses of EUR 886 million	Blöschl et al. (2013), Irwin (2016)
	October 2000	Southern Alps	N-ATL	38 fatalities, losses of EUR 7.5 billion	Kron et al. (2019), Lenggenhager et al. (2019)
	2002	Central Europe	SCAN, EU (east)	39 fatalities, losses of EUR 14.5 billion	Blöschl et al. (2013), Kron et al. (2019)
	October 2011	Switzerland	N-ATL	losses of EUR 52.5 million	Piaget et al. (2015)
	June 2013	Central Europe	SCAN, N-ATL	25 fatalities, losses of EUR 11 billion	Grams et al. (2014), Kron et al. (2019)
Snow event	December 2013	Middle East, Germany	EU (southwest)	5 fatalities, losses of EUR 106 million (Gaza and West Bank)	Erekat and Nofal (2013), Luo et al. (2015)
	January 2019	Alps	N-ATL	7 fatalities ²	Yessimbet et al. (2022)

From the 1950s to the present:

> 150.000 fatalities (wars excl.) > 120 billion €

A user-friendly method for their identification is important to <u>focus on the study of impacts</u> and determining the dynamics leading to said impacts.

> Possibility of assimilating into compound event studies.

Take-home message

Ciências ULisboa

UNIVERSIDADE De lisboa

