COMPOUND DROUGHT AND HEATWAVES OVER SOUTH AMERICA UNDER **PRESENT AND FUTURE CLIMATE CHANGE CONDITIONS:**

HISTORICAL EVOLUTION, ATMOSPHERIC DYNAMICS AND LAND-ATMOSPHERE FEEDBACKS

João Lucas Geirinhas jlgeirinhas@fc.ul.pt

PhD student in Geophysical Sciences and Geoinformation Ana Russo, Renata Libonati, Diego G Miralles

DHEFEUS 1st Workshop 13 November 2024

OUTLINE

- 1. Compound Drought and Heatwaves
 - Historical Characterization
 - Casy-studies: the summer seasons of 2013/2014 and 2014/2015
- 2. The record-breaking 2013/2014 hot summer
 - The exceptionality of the drought and heatwave conditions.
 - Influence of mesoscale meteorological drivers and soil moisture-temperature coupling on temperature escalation
- 3. Combined large-scale tropical and subtropical forcing on severe droughts
 - The joint role of internal variability and climate change on severe soil dessication
 - Flash droughts triggered by a coupled tropical and subtropical forcing
- 4. Future influence of soil moisture-temperature coupling on compound hot and dry conditions
 - Impact of climate change on the occurrence of compound hot and dry events through changes in the soil moisture-temperature coupling dynamics.

COMPOUND DROUGH AND HEATWAVES

HISTORICAL CHARACTERIZATION OVER SOUTHEAST BRAZIL

Period of analysis: Summer seasons (DJF) between 1980-2018.

- 1st sub-period: 1980/81 1998/1999 summer seasons;
- 2nd sub-period: 1999/00 2017/2018 summer seasons;

 $Percent \ change \ (\%) = \frac{N^{\circ}.of \ compound \ events(2nd \ sub-period) - N^{\circ} \ of \ compound \ events \ (1st \ sub-period)}{N^{\circ} \ of \ concurrent \ events \ (total \ analysis \ period)} \times 100$

COMPOUND DROUGH AND HEATWAVE EVENTS

THE SUMMER SEASONS OF 2013/2014 AND 2014/2015

- Clear skies conditions were promoted by **persistent anticyclonic circulation patterns**.
- Southeast Brazil experienced a **higher than normal** percentage of days under **atmospheric blocking conditions (d and e)**.

THE RECORD-BREAKING 2013/2014 SUMMER

THE INFLUENCE OF SOIL DRY-OUT ON TEMPERATURE ESCALATION

THE RECORD-BREAKING 2013/2014 SUMMER

MESOSCALE METEOROLOGICAL DRIVERS

A LONG-TERM HISTORICAL PERSPECTIVE OF SEVERE DROUGHT CONDITIONS IN SOUTH AMERICA

A LONG-TERM HISTORICAL PERSPECTIVE OF SEVERE DROUGHT CONDITIONS IN SOUTH AMERICA

- $R(Prec. Anomaly_{Total}, Prec. Anomaly_{Moisture Convergence}) = 0,94$
- $R(Prec. Anomaly_{Total}, Prec. Anomaly_{Moisture Recycling}) = 0,56$

A CLOSER INSIGHT INTO THE SEVERE 2019-2022 DROUGHT: EVOLUTION, EXCEPTIONALITY AND SPATIAL EXTENT

(*) only considering the grid-points where soil moisture anomaly < 2std.

THE INFLUENCE OF LARGE SCALE TROPICAL FORCING ON DROUGHT CONTIDIONS OVER SOUTH AMERICA

THE INFLUENCE OF LARGE-SCALE TROPICAL FORCING ON DROUGHT CONDITIONS OVER SOUTH AMERICA

THE INFLUENCE OF LARGE-SCALE SUBTROPICAL FORCING ON DROUGHT CONDITIONS OVER SOUTH AMERICA

200 hPa Velocity Potential (shade) 200 hPa Divergent wind field (vectors)

Rossby Wave Source (shade)

km '000

000

000

000

:000

.000

The 2019–2022 drought

	Wet		Non-Wet		
	RCP2.6	RCP8.5	RCP2.6	RCP8.5	-
NWS	↑↓	\uparrow	↑ -	↑ -	
NSA	↑ -	\uparrow	$\uparrow \uparrow$	$\uparrow \downarrow$	
NES	↑ ↑	$\uparrow \uparrow$	\uparrow	$\uparrow \uparrow$	[†] strengthening
SAM	↑ ↑	\uparrow	\uparrow	$\uparrow \uparrow$	↓weakening
SES	↑ ↑	$\downarrow \uparrow$	↑ -	$\downarrow \uparrow$	- - no change
SWS	_	_	↑ -	$\uparrow\uparrow$	
SSA	_	_	↑ -	$\uparrow \downarrow$	CDHW _{days} П

- Future changes in $CDHW_{days}$ are spatially coherent. The future evolution of Π depends on the region and the RCP considered.
- From the twelve regions, seven expect a simultaneous strengthening of CDHW_{davs} and Π under RCP8.5.
- For RCP2.6, this number decreases to six with many regions showing an increase in $\text{CDHW}_{\text{days}}$ being followed by either an absence of significant changes, or even a weakening of Π (e.g., NWS).
- Over SES non-wet domain, although an overall spatial amplification of the Π is expected, the opposite is observed for CDHW_{days}

 The hotspots of CDHW_{days} for the historical period are mainly concentrated over the NSA and NES wet domains, and over the NES and SES non wet domains

- The **regression coefficients** are expected to increase under both RCP's and for all regions, although some exceptions (NES wet domain; SAM non wet domain; SSA)
- Overall, the explained variance tends to increase from the historical to RCP8.5, particularly when considering the experiments conducted for the wet domains.

- An overall increment of CDHW conditions is estimated over most of the continent (excepting over SES).
- This changing pattern is estimated even when the direct effect of the global warming trends is disregarded.
- A strengthening of the soil moisture-temperature coupling stands as a valid candidate to leverage this future aggravation of droughts and heatwaves particularly over the tropical regions of SA (NWS; NSA wet domain; SES; SAM non wet domain).

THANK YOU!

João Lucas Geirinhas

Ana Russo, Renata Libonati, Diego G Miralles

jlgeirinhas@fc.ul.pt

LISBOA

