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ABSTRACT 

The Iberian Peninsula subregion is known for the increasing frequency and intensity of heatwaves and drought 

conditions, but a comprehensive understanding of the statistical dependencies between these events is still 

underexplored. This undermines effective climate adaptation and mitigation strategies. We analyse ERA5 reanalysis 

daily mean temperature and precipitation data to investigate the statistical dependencies between heatwaves and 

drought conditions for the period 1950–2022 in the Iberian Peninsula. Through statistical analysis of precipitation and 

temperature data into binary states classifying the occurrence of heatwaves and droughts, we construct Markov-chain 

models describing the temporal sequence of these extreme events throughout the Iberian Peninsula. Moreover, using 

the binary states we introduce a similarity measure between pairs of geographic locations, based in the Hamming 

distance, which enables us to visualize a graph showing the most similar regions in Iberian Peninsula with respect to 

extreme climate events. We show that this statistical similarity changes significantly in time. 

 

 

INTRODUCTION 

Heatwaves and droughts, two types of extreme events with very different onsets, are becoming more frequent and 

with rising intensities due to climate change (Bell et al., 2018). They affect many human activities and the environment 

(Ferral et al., 2017). These two types of events often combine into extreme compound events (Leonard et al., 2014), 

which can cause superior impacts than isolated events (Zscheischler et al., 2017; Bevacqua et al., 2021). For example, 

the 2010 compound event in Russia, which combined a massive heatwave and drought (Schumacher et al., 2019), had 

widespread crop yield losses throughout Russia, northeastern Ukraine and northwestern Kazakhstan (Loboda et al., 

2017). Therefore, it is vital to understand the relationship between them.  

Among the panoply of multivariate approaches applied to assess the impacts of multiple climate hazards, the use 

Markov chain (MC) models have become widely used in climate analysis, especially in droughts and heatwaves (Hao 

et al., 2018). The multi-phase MC model was used by (Lennartsson et al., 2008) to build a model that is capable of 

predicting the precipitation occurrence at a particular grid station in Sweden. The MC has also been utilised in several 

studies that have investigated the predictability of El Nino-Southern Oscillation (ENSO) and its connections to the 

solar and atmospheric indices (Iqbal & Siddiqi, 2022; Kirov & Georgieva, 2002; Navarra et al., 2013). Subsequently, 

we further analysed the co-concurrency of extreme events on each grid point pair as similarly applied to explore 

drought spatial patterns across Europe (Giaquinto et al., 2023). Nevertheless, in the context of assessing the propensity 

of extreme climate events, MCs are not a typical choice.  

In this paper we will process temperature and precipitation data into binary states, labelling occurrence or absence of 

extreme events with respect to those two climate variables, respectively heatwaves and droughts. The sequence of 

binary states in time at particular geographic locations will then be used to derive a MC describing the transition 
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between the binary states. We used the ERA5 reanalysis dataset from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) daily data with a fine spatial resolution of 0.25 degrees from 1950 to 2022 (Hersbach et al., 

2020).  

DATA AND METHODS 

The sequence of binary states in time at particular geographic locations will then be used to derive a MC describing 

the transition between the binary states. We used the ERA5 reanalysis dataset from the European Centre for Medium-

Range Weather Forecasts (ECMWF) daily data with a fine spatial resolution of 0.25 degrees from 1950 to 2022 

(Hersbach et al., 2020). The study area is within the geographic coordinates of 36°N to 44°N latitude and -10°E to 

4°E longitude. The ERA5 dataset provides daily precipitation and temperature data, which are the basis for calculating 

SPI and extreme temperature exceedances . Our methods are based on the statistical analysis of time-series of 

precipitation and temperature, as well as methods to derive the MC of binary states classifying the occurrence or 

absence of heatwaves and droughts. The mapping from continuous variables of temperature and precipitation into the 

binary states of heatwaves and droughts is based on the standard definition of extreme (high) temperatures which are 

heatwaves (above the 90th percentile), and extreme (low) precipitation which are droughts.  

Processing precipitation data and performing drought analysis 

The Standardized Precipitation Index (SPI) is one of the most commonly used indices for identifying and quantifying 

drought conditions due to its low data requirement and its ability to analyse the various aspects of drought based on 

varying time-scales. SPI plays a pivotal role in the identification and characterization of drought or wet events, 

enabling the determination of their duration, intensity, and magnitude. Renowned for its simplicity, the SPI, introduced 

by McKee et al. (1993), relies solely on precipitation data and has garnered widespread adoption, endorsed by the 

World Meteorological Organization (WMO, 2012), albeit not without considerations (Vicente-Serrano et al., 2010). 

The SPI's intrinsic multiscalar nature facilitates temporal and spatial comparability, thereby enabling the monitoring 

of drought response across diverse ecosystems. SPI targets only precipitation anomalies, being  a robust tool for 

monitoring drought (WMO, 2012).  

The calculation of SPI over different time scales (1, 2, 3, 6, 12, and 24 months) allows for the monitoring of drought 

conditions from shorter periods to longer periods. The 12-month period offers a view of precipitation over an entire 

year, reflecting long-term trends, which is key for detecting and managing hydrological droughts. We adopted this 

time scale for this study because SPI-12 captures long-term trends in precipitation, providing a broader picture of 

drought conditions. It is less influenced by short-term variability and can indicate more persistent anomalies in 

precipitation. Drought indices are classified into various categories, providing a standardized method to assess and 

communicate drought severity based on the SPI values as follows: 2.0 or more: (extremely wet), 1.5 to 2.0: (very wet), 

1.0 to 1.5: (moderately wet), 0.0 to 1.0: (mild wet), -1.0 to 0: (near normal), -1.5 to - 1.0: (moderately dry), -2.0 to -

1.5 (severely wet), -2.0 or less: (extremely dry). 

Figure 1: (Left) SPI data series for 3-, 6- and 12-months timescales for a given location (Blue line). The pink color indicates less 

than median precipitation in a series of SPI data series; (Right) Example of heatwave periods from temperature data series (red 

dots). 
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Processing temperature data and performing heatwave analysis 

For heatwave detection, one calculates a daily threshold at the 90th-percentile temperatures for each calendar day 

considering the climatological temperature averages. A dynamic threshold for heatwave detection is computed using 

a moving centered window of 31-days  applied to the climatological temperatures. This guarantees that climatological 

averages and anomalies are appropriately reflected in the 90th percentile threshold.  

Further refinement is achieved by calculating a rolling sum of days flagged as exceeding the 90th percentile threshold: 

the first day of a heatwave is the 5th consecutive day above the 90th percentile, indicating a continuous sequence of 

high temperatures typical of a heatwave. If there is a drop below the 90th percentile between a heatwave day and an 

abnormal temperature, the drop day is still counted as part of a continuous heatwave period. This aligns with the 

definition of heatwaves, as events persist for multiple days. Figure 1 (right) illustrates the occurrence of a heatwave 

in a series of temperature measurements. 

Binary states of extreme climate events, Markov-states and Hamming distance 

Flagging each day of temperature and precipitation time series as belonging or not to a heatwave and drought 

respectively, we derive an auxiliary time series of binary states (SH, SD). State SH , SD = 0, indicates the absence of a 

heatwave or drought respectively, while a value of 1 indicates its respective occurrence (Figure 2).  

By tracking simultaneously the derived series of binary states for both heatwaves and droughts, we then calculate the 

frequency of all possible transitions between the four possible states,  (SH, SD) = [(0,0); (0,1); (1,0); (1,1)]. These 

frequencies are mapped into conditional probabilities  

 

𝑃((𝑆𝐻(𝑡 + 𝛥𝑡), 𝑆𝐷(𝑡 + 𝛥𝑡))|(𝑆𝐻(𝑡), 𝑆𝐷(𝑡))) =  
 𝑃((𝑆𝐻(𝑡+1),𝑆𝐷(𝑡+1));(𝑆𝐻(𝑡),𝑆𝐷(𝑡)))

𝑃((𝑆𝐻(𝑡),𝑆𝐻(𝑡)))
         (1) 

 

where 𝛥t is the time within which the transition occurs. Here we consider 𝛥t=1,2,3,4,5 and 6 months. The set of 

conditional probabilities defines a MC. Figure 3 illustrates the Markov-chain (Left) and frequency of binary-states 

transitions (Top-Right) for a specific time delay (𝛥t=1 month). We derive one Markov-chain as described above for 

each grid in the mesh covering this region (Figure 3, Bottom-Right). 

 

 
Figure 2: Illustrative example for the year 2006. Red dots indicate heatwave binary states and blue crosses indicate drought binary 

states. A low value (around 0) indicates absence of heatwave/drought, while high value (around 1) indicates the respective 

occurrence.. 
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Figure 3: (Left) Markov chain probability of changing to another state Heatwaves and SPI-12 (Top-Right) Histograms of Possible 

transitions from one State to another. (Bottom-Right) Transition Probabilities from States 01 and 10 to Other States on Month 1. 

Together with the binary states labelling the occurrence of heatwaves (H) and droughts (D),  (SH, SD) which are used 

to derive one MC for each location in Iberian Peninsula, we also consider the Hamming distance (Mackay, 2003) 

between both the heatwave and drought series of binary states. The Hamming distance is defined for each pair of 

locations, l1 and l2, and it is given by:  𝐻𝑡𝑜𝑡𝑎𝑙(𝑙1, 𝑙2)  = √𝐻𝑑
2(𝑙1, 𝑙2) +  𝐻ℎ

2(𝑙1, 𝑙2)⬚
⬚  

 where 𝐻𝑑(𝑆1
(𝑑)

, 𝑆2
(𝑑)

)  =
1

𝑁
∑ ⬚𝑁

𝑖=1 |𝑠1
(𝑑)

(𝑖) − 𝑠2
(𝑑)

(𝑖)|  and  𝐻ℎ(𝑆1
(ℎ)

, 𝑆2
(ℎ)

)  =
1

𝑁
∑ ⬚𝑁

𝑖=1 |𝑠2
(ℎ)

(𝑖) − 𝑠2
(ℎ)

(𝑖)|, with 

𝑠2
(𝑑)

(𝑖) and 𝑠2
(𝑑)

(𝑖) the binary state (0 or 1) with respect to heatwave (“h”) or drought (“d”) at location l1 in day i, and 

similarly for location l2. In other words, the Hamming distance measures the proportion of differing bits between 

sequences, providing a quantitative measure of sequence dissimilarity.  

RESULTS      

The 90th percentile temperatures differ across Iberia, with the southern regions showing a higher average temperature 

than the northern region. The Pyrenees Mountains between Spain and France show a much lower average 90th 

percentile temperature than the remaining areas. Regarding precipitation, the northern coastal regions of Portugal and 

Spain, as well as the Pyrenees Mountains, show higher annual values (not shown). 

By computing the Hamming distance between each pair of geographic locations (longitude and latitude), one can draw 

a weighted graph of similarities, where nodes represent locations and edges represent the similarity, with a thickness 

proportional to the inverse of the Hamming distance. Figure 4 collects the main results of this manuscript showing, 

from left to right, three consecutive periods, 1951-1975, 1976-2000 and 2001-2022. The last column shows the graphs 

for the total time period 1951-2022. 

 

The distribution of the similarity values, 1/Htotal, follows approximately a power-law (not shown). For this reason, 

plotting the last quartile of highest similarities leads still to a too dense graph, difficult to visualize. Therefore, we 

opted by showing in Figure 4 only the 1% highest similarities (first row), 0.1% (second row) and 0.01% (third row). 

 

Four points are worth highlighting. Firstly, for all time periods, the highest similarities occur typically between close 

– or adjacent – geographic locations. Second, through time the “clusters” of high similarities have covered a larger 

and larger region of the peninsula. This is particularly true for the last periods, from 1976-2000 to 2001-2022. Third, 

through time the value of the similarities for the highest percentiles has decreased. Lastly, the areas where the highest 

similarities occur do not seem to be connected with the occurrence of higher temperatures or lower precipitation 

regions. 
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Figure 4: Assessing the similarity with respect to extreme climate events, between different regions in Iberian Peninsula. (Col. 1, 

Left) Graph with the cumulative similarities between 1951 and 1975, (Col. 2) between 1976 and 2000, (Col. 3) between 2001 and 

2022, and (Col. 4) the total time period 1951-2022. (First row, Top) Graphs showing the 1% highest similarities, (2nd row) the 

0.1% highest similarities and (3rd row) the 0.01% highest similarities. The similarities are measured by the inverse of the 

corresponding Hamming distance between each two geographic locations. Blue dots represent grid points, whereas red edges 

represent the similarity “strength” between pairs of points. 

 

DISCUSSION AND CONCLUSIONS        

The results described previously show evidence that high similarities have become weaker through time and, 

simultaneously have spread through larger regions. On one hand, this might indicate that coping with possible 

occurrences of extreme events can become more difficult, since similarities between different geographic regions 

seems to weaken since the last decades. On the other hand, the more homogeneous distribution of highest similarities 

throughout the entire Peninsula, shows that more and more the occurrence of an extreme event, when observed, tends 

to spread out through larger regions.  

 

All in all, we have introduced and developed a framework to analyze the ubiquity of transitions from and to extreme 

events related with temperature and precipitation. The framework includes two parts: one, described through a Markov 

chain model, related with the probability of state transition at individual locations, and another, based in Hamming 

distance, which measures how similarly these transitions occur in two distinct locations. A possible next step in this 

approach is to include similarities incorporating a non-zero time-lag between the pair of locations. In this way, high 

similarities between different locations, for a particular time lag, could open the possibility to uncover possible causal 

connections between different regions.  
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