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MOTIVATION & CONCEPTS

Ecological Resilience: ability of a vegetation community

to recover or adapt following a disturbance (Gessler et al.,

2020; Falk et al., 2022).
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MAIN GOALS 

▪ Modulate the burned vegetation recovery of Mediterranean Biome
▪ How the burned vegetation has been recovering after recurrent fires in the Mediterranean biome

▪ Observe the recovery rates among the different land covers

▪ Fire severity, pre-fire state of vegetation and post-fire climate conditions modulate the recovery rate

Dinerstein et al., (2017)



Land Cover
(ESACCI 2001-2020)

AGGREGATION INTO 6 MAIN CLASSES

Precipitation

T2m
(ERA-LAND 2001-2022)

PRE-PROCESSING

• Hourly to Daily 

• Daily to 16-day composites

PRE-PROCESSING

• Cloud | Snow | Ice correction

• Interpolation of missing data

• Fast Fourier Transform application

• Detrend using LOESS

16-day

Enhanced 

Vegetation 

Index (EVI)
(MODIS 2001-2022)
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BURNED 

AREAS
(MODIS 2001-2022)

Selection of areas 

burned TWICE between 

2001 and 2022

BROADLEAVES 

(1st and 2nd Events)

SHRUBLAND 

(1st and 2nd Events)

NEEDLELEAVES

(1st and 2nd Events)

TRANSITIONAL WOODLAND 

(1st and 2nd Events)

MIXED FOREST 

(1st and 2nd Events)

FOREST CHANGE 

(1st Event: Forest | 2nd Event: 

Other Type)

SEVERITY PRE-FIRE CLIMATEFINAL REMARKSDATA | METHODS RECOVERY RATE



LOSS OF GREENNESS ~ Fire Damage

y t = EVI t − EVIMAX (t)

Ideal healthy state of 

vegetation

RECOVERY MODEL 

EQUATION

RECOVERY RATE: Value of b

By means of a linear regression, tested for different 

time-steps between 2 and 5 years. 

Slope of linear regression with the highest r2

𝑦 = 𝑎𝑒−𝑏𝑡

Minimum value

a = EVI t = EventN − EVIMAX t = EventN

bt = ln
𝑦(𝑡)

𝑎

Recovery rate

Gouveia et al., (2010); Bastos et al., (2011); Gouveia et al., (2018)
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𝑑𝑦

𝑑𝑡
= −𝑏𝑦

𝑎1
𝑎2
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MODEL FITTING

MINIMUM: Value of a

Set following the fire event
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𝒃𝑫𝑰𝑭𝑭 = 𝒃𝟐 − 𝒃𝟏

𝑏𝐷𝐼𝐹𝐹 > 0 indicates 𝒃𝟐 > 𝒃𝟏

𝑏𝐷𝐼𝐹𝐹 < 0 indicates 𝒃𝟐 < 𝒃𝟏

p10 MEAN p90

𝑏1 recovery rate from event 1

recovery rate from event 2𝑏2

Faster 

recovery 

from 2nd

event

𝒃𝟐 > 𝒃𝟏

Faster 

recovery 

from 1st

event

𝒃𝟐 < 𝒃𝟏

SEVERITY PRE-FIRE CLIMATEFINAL REMARKSDATA | METHODS RECOVERY RATE
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aREL =

a

GYMEAN

SEVERITY PRE-FIRE CLIMATEFINAL REMARKSDATA | METHODS RECOVERY RATE

𝑏1 Recovery Rate from Event 1 (E1)

Recovery Rate from Event 2 (E2)𝑏2
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SEVERITY PRE-FIRE CLIMATEFINAL REMARKSDATA | METHODS RECOVERY RATE

𝑏1 Recovery Rate from Event 1 (E1)

Recovery Rate from Event 2 (E2)𝑏2

aREL =
a

GYMEAN
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SEVERITY PRE-FIRE CLIMATEFINAL REMARKSDATA | METHODS RECOVERY RATE
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Strong performance of statistical model of EVI on capturing both fire events,

determining recovery rate, fire severity and pre-fire conditions.
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NO RECOVERY

REORGANISATION
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Temperature Precipitation

HIGH RECOVERY RATES

Temperature Precipitation

LOW RECOVERY RATES

SEVERITY PRE-FIRE CLIMATEFINAL REMARKSDATA | METHODS RECOVERY RATE
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