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Abstract

The South-Western Europe (Iberian Peninsula) has been highlighted for
the escalating occurrence and severity of droughts and heatwaves during
the last decades. However, the statistical interdependencies between
these extremes remain largely understudied, which makes effective climate
adaptation and mitigation strategies compromised as a result. In this study,
ERAS5 reanalysis of daily mean temperature and accumulated precipitation
data is used to examine the statistical interdependencies that exist between
drought conditions and heatwaves in the Iberian Peninsula from 1950 to
2022. Markov chain models are applied to establish the probability of
transitions among the four states monthly, event-free, drought, heatwave
and compound states. The connection of these extremes between pairs of
grid points by the use Hamming distance technique is also explored by
analysing the similarities in decades and seasons. The results confirm that
there is a rise in extreme events in the Iberian Peninsula, the magnitude is
increasing and the connections of occurrences of extreme events between
grid points are gradually becoming weaker which shows that the statistical
similarities are changing significantly in time.



ii



Acknowledgements

This research work has received support from the AIClimate@EU project
(EEA Bilateral Initiative 2014-2021, Portugal-Norway) and Nordic Cen-
ter for Sustainable and Trustworthy Al Research (Oslo Metropolitan Uni-
versity, Norway). A.R. also acknowledges funding from the Portuguese
Fundacéo para a Ciéncia e a Tecnologia (FCT) L.P./MCTES through national
funds (PIDDAC) - Instituto Dom Luiz (https:/ /doi.org/10.54499 /UIDP /5-
0019/2020 and https://doi.org/10.54499/LA /P /0068/2020), and projects
DHEFEUS (https:/ /doi.org/10.54499/2022.09185.PTDC). A.R. was sup-
ported by FCT under the grant agreement https://doi.org/10.54499/2022.-
01167.CEECIND/CP1722/CT0006.

iii



iv



Contents

[Abstract i
[Acknowledgements| iii
(I Introduction| 1
(1.1 _Problemstatementl . .. ... .................. 3
(1.2 Objectives| . . ... ... ... ... .. ... ... .. 4
(1.3 Research questions| . .. .. ................... 5
(1.4 Significance of thethesis| . . . . ... ....... ... ... . 5
[I.5  Organization of the thesis| . . .. .. .. ... ... .. .... 6

2 Background and state of the art| 7
2.1 _What are Extreme Events?l . . . . . . . . . .. .. ... .... 7
.11 Heatwaves|. . . .. ... ... ... .. ... .. 9

12 Droughtf . ... ........ ... ....... ... 11

.13 Compound Events| . . . ... ... . ... ... ... 13

[2.2  Concepts from statistical learning| . . . . . ... ... ... .. 14
.21  Markov chainanalysis|. . . .. ... ... .. ... .. 14

2.3 Hamming Distance| . . . . . ... ................ 15
2.4 Stateoftheartl . . .. .. .. ... ... ... .. ... ... 16
nclusion| . . . . ..o oo 22

3 Data and Methodology| 23
BI Datal. ... ...covii 23
B3.11 DataDownload|...................... 23

3.1.2  Data Preprocessingf{ . . . . ... ............. 24

B.13 NatureofDatal ... ............ .. ... ... 24

B.2 Heatwaves| . .. ... .. ... ... ... ... .. ..., 24
.............................. 27
3.3.1 SPI/SPEltimescales . ... ............... 28

3.3.2  Drought Classifications| . ... ... .......... 29

B4 MarkovChain . . ... ... ... .. ... ... .. ... 30
3.4.1 Application of Markov Chains to Analyze Climate [

I State Transitionsl . . ... ................ 30




4 Results] 31

4.1 Descriptive Statistics| . . . ... ... ... oL 32
42 SPI/SPEI Climatology] . . . .. ................. 37

4.3 Monthly states of random grid points| . . . ... ... .. .. 40
44 Markov chains of extreme climate events| . . ... ... ... 42
4.4.1 Markov Chain transitional probabilities| . . . . . . .. 42

4.4.2  Spatial correlation of Markov states| . . . . ... ... 45

4.5 Hamming distance to assess spatial conditions of extreme |

[ events| . . ... ... 47
5 Conclusion 57
0.1 Introductionl . ... ... ... ... .. 0 oL 57
.2 Summary of Findings|. . . ... ................. 57
b.3  Implications of the Research| . . . . ... .......... .. 58
5.4 Recommendations . ....................... 58
0.5 Limitationsof thethesis| . . . . ... ... ... ........ 59
b.6 FutureWorkl . . . ... ... .. ... 0L 59

vi



List of Figures

(1.1 Change in global surface temperature as results of human

[ and natural influence [7]]. . . . . ... ... ... ... .... 2
[3.1 Temperature Trend with Heatwave Indicator using 31-day |

| moving window (1950 t02022) . . . . . . ... ... ... .. 27
B2 Temperature and Heatwave trendsin2003.]. . . . . ... .. 27

4.1 Scatter Plot of Average Temperature vs Total Precipitation| 34
4.2 Scatter Plot of Average Temperature vs Total Precipitation |
[ forasingle gridpoint|. . . .. ... .. 0oL 35
4.3 YearlX Average Temperature Over Time, AT=1.673| . .. .. 36
M.4  Daily Total Precipitation Over Time|. . . . . . ... ... ... 37
|5 Temperature Climatology of the Iberian Peninsula] . . . . . . 37
.6 Seasonal Temperature Climatology of the Iberian Peninsula] ~ 38
4.7 Precipitation Climatology of the Iberian Peninsulal . . . . . . 38
4.8 Standardized Precipitation Index (SPI-3,6,12) of a Selected |

| grid point in the Iberian Peninsula Over Time using.| . . . . 39
.9 " Standardized Precipitation-Evapotranspiration Index (SPEI- |

| 3,6,12) Over Time usin@ ..................... 39
.10 Monthly State values over years Heatwaves and Drought |

| (SPI-12) 1951 - 1979 Iatitude: 37.0 longitude: -6.0] . . . . . . . 40
.11 Monthly State values over years Heatwaves and Drought |
[ (SPI-12) 1975 - 1999 latitude: 37.0 longitude: 6.0 ....... 41
.12 Monthly State values over years Heatwaves and Drought [
[ (SPI-12) 2001 - 2022 latitude: 37.0 Iongitude: -6.0] . . . . . . . 41
.13 Markov chain demonstrating probability of changing to |
[ another state Heatwavesand SPI-12] . . . . . ... ... ... 43
.14 Markov chain demonstrating probability of changing to |
nother H ndSPI-6[ . . ....... ... .. 43

4.15 Heatmaps of State Transitions.| . . . ... ... ... ... .. 46
4.16 Inverse of Hamming distance between pairs of grid-points |

| grouped by years| . . . ... ... oo 47
M7 Tnverse of Hamming distance between pairs of grid-points |

[ from 1951-2022 . . . . . .. 48
{4.18 Inverse of Hamming distance between pairs of grid-points |

| of Different Decades] . . ..................... 50
4.19 Inverse of Hamming distance between pairs ot grid-points [

[ Different Seasons| . . . .. ... .... ... .. .. ...... 51

vii



viii



List of Tables

2.1 Key research papers considered in state of the art|. . . . . . . 20
3.1 Drought Classifications|. . . . ... ... ... ......... 29
4.1 Statistical Summary of Daily Average Temperature and |
| Accumulated Precipitation|. . . . .. ... ... 00 L. 32
.2 Statistical Summary of Average Daily Temperature and |
| Accumulated Precipitation Latitude:40.0 Longitude:2.0] . . . 32

ix






Chapter 1

Introduction

The Intergovernmental Panel on Climate Change (IPCC) sixth assessment
report defines "Climate change" as "the state of the climate that can be
identified by changes in the mean and/or the variability of its properties
and that persists for an extended period, typically like decades or longer"
[1]. Long-term alterations in the Earth’s average temperature, precipitation
patterns, weather events caused by human activities such as burning
fossil fuels, deforestation, industrial processes, greenhouse gas emission,
and some natural factors such as volcanic eruption and changes in solar
radiation [2, [3] are the main causes of the climate change (Figure [I.1).
However, the effect of natural factors on climate change is relatively
minimal compared to human activities [4]. Although climate change is
expected to have a global impact, cities should be prioritized for assessment
because of their high population density, abundance of resources, and
economic activity, which makes them more vulnerable to the effects of
climate change [5]. According to Giannakis and Bruggeman [6], over 75%
of people in the European Union live in urban areas, and by 2050, this
percentage is expected to rise to 82%.

Unprecedented heatwaves have occurred in recent years all over the
world [8]. Examples include the heatwave in Western Europe in 2003,
which claimed over 70,000 lives [9], and the heatwave in Eastern Europe
and Russia in 2010 that is estimated to have killed 55,000 people [10].
Amid simultaneous heatwaves and droughts in the summer of 2017, the
Mediterranean region had the 'Lucifer’ heatwave in late July and early
August, while Portugal saw devastating wildfires in June that claimed
65 lives [11, [12]. According to earlier estimates conducted in Europe,
heatwave frequency is predicted to increase, especially in southern Europe
[13]. The study by Molina et al. [14] uses the EURO-CORDEX RCP8.5
model ensemble and finds strong and significant increases in heatwaves
across a range of definitions, from nine to forty-five times. With estimates
ranging from 2 days to 27-67 days, Sanchez-Benitez et al. [15] calculated
significant changes in the number of heatwave days, especially in Iberia
and the Mediterranean region. Sanchez-Benitez et al. [15] also observed
a notable increase in the intensity of heatwaves, particularly in south-
central Europe. Heatwaves impact vegetation, air quality, and human



How do we know humans are causing climate change?
Observed warming (1850-2019) is only reproduced in simulations including human influence.
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Figure 1.1: Change in global surface temperature as results of human and natural
influence [7].

health, among other aspects of society and the environment. For example,
the 2003 heatwave in Europe caused high levels of ozone to build up
and serious health problems that killed almost 15,000 more people in
France alone [9]. Heatwaves can have a variety of repercussions, such as
higher evapotranspiration rates, lower agricultural yields, higher energy
consumption, lower power plant efficiency, air pollution, and negative
health effects[16]. Heatwaves have also been connected to wildfires
becoming longer, bigger, and more intense, which has had disastrous
effects on the ecosystem and caused significant financial losses [17].
The European heatwave, which was aggravated by concurrent drought
conditions, was named by the United Nations Environment Programme
in 2003 as the most expensive weather-related disaster globally [9].

Droughts also have major negative effects on the environment and civil-
ization, such as sharp declines in gross primary productivity, which result
in shortages of food and higher food prices worldwide [18]. Droughts are
thought to cost $7 billion in economic harm each year worldwide, with
possible effects on livestock, river transportation, hydropower generation,
bioenergy, and energy consumption [19]. The type of drought being con-
sidered (e.g., meteorological, agricultural, hydrological) and the selected
drought index are important factors to consider when evaluating changes
in drought patterns [20]. However, as Ojeda et al. [21]] point out, estim-
ates point to longer and more frequent droughts in central Europe and the
Mediterranean region, as well as in the Iberian Peninsula. According to
Jaagus et al. [18], there will likely be substantial changes in river discharge
in the future, with rises expected in northern Europe and declines in south-
ern Europe. Drought pattern changes are dependent on the observational
methods, and changes in precipitation extremes show heterogeneity over
space [22].



The effects on the environment and society are exacerbated when
extreme weather events happen together [23]. Environmental risks often
result from the interaction of multiple climate events occurring at different
time and space scales [24]. For example, a day that is windy, hot, and
dry may result in a wildfire, even if these factors by themselves might not
be deemed extreme. A compound event is defined as the conjunction of
numerous climate extremes, according to Avila-Diaz et al. [25, 26] study
on managing the risks of extreme events and disasters. Additionally,
there appears to be a tendency for winter to last shorter and summer
to last longer. According to forecasts from climate models, as long as
anthropogenic emissions keep piling up, further warming is expected [27].

Considering the expected ongoing climatic changes, static definitions
of seasons (such as astronomical and meteorological) are insufficient
for adequately determining seasonal timing and duration [28]. The
study emphasizes how metropolitan areas are becoming more and more
susceptible to extreme weather events, especially heatwaves and droughts,
because of the negative effects they have on both the environment and
civilization. The huge financial losses and detrimental health effects linked
to these events highlight how urgent it is to comprehend their statistical
connections and how they vary over time [29]. Furthermore, the impact of
seasons on climatic systems emphasizes how important it is to evaluate
trends in seasonal transition dates, especially in areas that are vital to
agricultural productivity [30]. To tackle these concerns, the study analyze
the statistical dependencies between droughts and heatwaves in climate
systems in Iberian Peninsula.

1.1 Problem statement

The study emphasizes how important it is to have a thorough understand-
ing of the statistical correlations and temporal dynamics between heat-
waves and droughts throughout time. A complete understanding of the
long-term interactions between heatwaves and droughts is lacking, even
though much prior research has concentrated on specific extreme weather
occurrences [31-34]. The study bridges a knowledge gap on long-term
climate variability and its consequences for future climate projections by
examining the temporal dynamics and shifts in the statistical relationship
between these occurrences. Although the impact of seasons on climate vari-
ability is widely acknowledged [35, 36], a more thorough examination of
how seasons impact the frequency and severity of extreme weather events,
such as heatwaves and droughts, is still necessary. The study fills this
knowledge gap and sheds light on the seasonal drivers of extreme weather
occurrences by looking at the seasonal patterns in the study region. Assess-
ing climate risk and developing adaptation plans require an understand-
ing of the probability of changing climatic states, including those with and
without extreme events [37].

The probabilistic character of transitions has often been overlooked
in favor of deterministic correlations between climate variables in earlier



research [5]. The study fills this research gap by using Markov Chain
analysis, which offers a probabilistic framework for examining climatic
shifts [38]. The regional distribution of climate events is not uniform,
and a deeper comprehension of the spatial link between extreme weather
occurrences across regions is necessary [39]]. The study fills this knowledge
gap by examining the spatial clustering of heatwaves and droughts in
the study region and offering insights into the underlying mechanisms
governing spatial patterns of climatic variability. Assessing the efficacy of
climate models and determining how transferable adaption techniques are
required comparing the similarity of extreme climate occurrences across
different places. The regional and temporal variations in similarity patterns
have been overlooked by previous studies, which frequently relied on
simplistic criteria to compare the similarities of climate events [40]. The
study fills this gap by employing the Hamming distance metric, which
offers a more sophisticated method of evaluating similarities between
climate events.

The frequency, severity, and geographical distribution of extreme
weather events are changing due to climate change; however, it is yet
unclear how exactly these changes will affect heatwaves and droughts
[41]. However, the research addresses this knowledge gap by analyzing
historical data to identify statistical dependencies between heatwaves and
droughts. By understanding these relationships, the study offers insightful
projections about future occurrences of these events. This information is
crucial for stakeholders and policymakers who are developing strategies
to address and mitigate the impacts of these phenomena in the study
region. The intricate relationships between heatwaves, droughts, and other
climatic variables in the Iberian Peninsula can be better understood by
looking into these issue statements. Additionally, they emphasize how
crucial it is to take temporal and spatial aspects into account to comprehend
climate dynamics and guide the formulation of climate-related policies and
decision-making procedures [40].

1.2 Objectives

The main goal of this study is to analyze the statistical dependencies
between droughts and heatwaves in the Iberian Peninsula. To achieve this,
the study has laid out these objectives:

1. Identify the Nature of the Statistical Relationship: This objective
focuses on discerning the types of statistical relationships that exist
between droughts and heatwaves within the region, and how these
relationships have evolved.

2. Seasonal Influence on the Climate System: Here, the aim is to
determine how different seasons affect the climate dynamics of the
region, particularly the occurrence of droughts and heatwaves.

3. Probabilities of Extreme Event Transitions: This involves calcu-
lating the likelihood of transitions between various climatic condi-
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tions—ranging from normal to extreme events. The study seeks to
understand the conditions under which such transitions occur.

1.3 Research questions

This study proposes to answer to three important research questions, which
are:

1. What is the nature of the statistical relationship between droughts
and heatwaves in the Iberian Peninsula, and how has this relationship
changed over time?

2. How do different seasons influence the climate system in the Iberian
Peninsula, particularly in terms of affecting the likelihood and
severity of droughts and heatwaves?

3. What are the probabilities or likelihood of transitioning from one
climatic condition to another, for example; from normal conditions
to extreme events or vice versa?

1.4 Significance of the thesis

This thesis adds to our understanding of the intricate relationships between
heatwaves and droughts in climate systems [42]. Through the identification
of the statistical relationship between heatwaves and droughts and their
temporal variations, the study contributes to our understanding of the
fundamental dynamics of climate systems and it is essential for forecasting
future patterns in climate change and creating workable plans for both
adaptation and mitigation [43].

Having a better understanding of the statistical relationships between
these occurrences helps stakeholders better target initiatives and distribute
resources, strengthening society’s ability to withstand the effects of climate
change [23]. For instance, if the findings indicate that a severe drought
is ongoing, stakeholders can preemptively allocate resources like water
supplies and cooling centres in anticipation of a subsequent heatwave. This
proactive approach allows for more effective distribution of aid, reducing
the strain on emergency services and infrastructure during peak times.
By using sophisticated statistical and computational methods to evaluate
climate data, the study advances scientific understanding of the subject
of climatology. The study’s approaches and conclusions can be used
as a foundation for additional investigation into climatic variability and
extreme occurrences in different places through modelling and research.
Research on the statistical relationships between heatwaves and droughts
in climate systems is important because it helps us understand climate
dynamics, guides the development of risk management plans, directs
the creation of policies, and advances our understanding of climatology.
Considering continuing climate change, its conclusions have applications
for strengthening climate resilience and adaptation initiatives [5].



1.5 Organization of the thesis

The thesis is organized into five sessions. Chapter one presents the
background, problem statement, aim, objectives, research questions and
significance. Chapter two presents the literature review on the statistical
dependencies between droughts and heatwaves in climate systems at the
Iberian Peninsula. Chapter three presents the study methodology on
how the study was conducted and analysed. Session four presents the
analysis and results of the study. Chapter five presents the conclusion,
recommendations, and future works.



Chapter 2

Background and state of the art

This chapter provides a comprehensive background of the current liter-
ature focusing on droughts and heatwaves and their interplay in climate
systems. The state of the art section aims to identify the current state of
knowledge on the relationship between these extreme weather events and
to highlight areas for further research.

The chapter begins by providing a detailed definition of compound
events, Hot-dry extremes, droughts and heatwaves and drivers of extreme
events. Some concepts from statistical learning will be highlighted, and
finally, the current state of the related studies will be pinpointed and
how they would be applied to the study. It then explores the historical
background of research in this area, starting from early studies that focused
on individual extreme events to recent research that has shifted towards
examining the statistical dependencies between these events.

Additionally, different statistical methods used to study the relationship
between droughts and heatwaves and the various associated drivers,
including classification and regression analyses, will be presented.

2.1 What are Extreme Events?

Severe weather conditions including heatwaves, droughts, and floods
cause fatalities as well as substantial property damage and financial losses
[41]. According to projections, over this century, there will likely be an
increase in the frequency, duration, and intensity of these extremes across
several European regions, impacting previously vulnerable areas such as
the Mediterranean and new ones in mid-latitudes [44]. Comprehending
the existing conditions and anticipated shifts in these extremes is essential
for gaining scientific understanding as well as assisting society in devising
adaptation and mitigation strategies [45]. As a result, a quick and easy-
to-use tool is required to determine extreme occurrences, susceptible areas,
and crucial seasons [41]. For this reason, several extreme indices have been
created, such as the Palmer Drought Index (PDI) and Effective Drought
Index (EDI) for droughts, the Universal Thermal Climate Index (UTCI) for
heatwaves, and the Standardized Precipitation Index (SPI) for droughts
[46]. These indexes are used to create extreme event catalogues, like the
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ones the European Drought Observatory publishes [47], and to identify and
characterize extreme events. It is crucial to remember that these indices
differ greatly in terms of their timeframes, thresholds, approaches, and
intended uses. As a result, there are differences in what the various indexes
consider to be extraordinary [48].

Extreme heat events have increased noticeably in recent years, and
some of these events have had major effects on economies, society,
and agriculture [48]. These extreme circumstances may result from the
interaction of several drives and processes, or they may develop from a
single underlying reason [49]. Furthermore, it is commonly known that
forcing by greenhouse gases (GHGs) influences not only the mean climate
state but also the variability of the climate, the likelihood and severity of
weather extremes, and the climate [50]. Gaining a greater knowledge of
these contributing factors specifically, the underlying physical mechanisms
in the current climate context—is crucial to improve forecasting accuracy
and revise future estimates [49]. Since preindustrial times, there has been
a shift in the probability of severe occurrences due to changes in land
use and land-cover, as well as climate change, which is mostly caused
by anthropogenic greenhouse gas emissions [51]. Although it is difficult
to link a particular event to climate change alone, it is possible to assess
and measure the impact of different causes on shifts in the probability
of an event or a certain class of events [52]. A probabilistic attribution
approach was used in early studies of extreme occurrences to evaluate
the change in likelihood ascribed to greenhouse gas (GHG) forcing [53].
Using this strategy, one can compare the probability of an event under
hypothetical conditions (also known as "counterfactual") with that under
actual conditions (also known as "factual") [54].

On the other hand, a complementary but more modern method uses
"storylines" to calculate how much anthropogenic forcing contributed to a
certain occurrence [55]. This method provides a more thorough knowledge
of the reasons of the event by identifying a series of circumstances that
led up to it and evaluating the significance of each [56]. Taking a more
mechanical approach, this framework can also be expanded to consider
the attribution of extreme events to different atmospheric, oceanic, and
land variables. Sea surface temperature (SST) anomalies have an impact
on local and worldwide weather and climate patterns, indicating that the
ocean is a major contributor to climate variability [57]]. Through changes in
atmospheric circulation known as teleconnections, these anomalies, which
are frequently linked to climate events like the El Nifio Southern Oscillation
(ENSO), can affect global patterns of temperature and precipitation [58].
It has been suggested that specific sea surface temperature (SST) trends
in northern Eurasia increase the likelihood of heatwaves via changing air
circulation [59]. SSTs can have varying effects on various occurrences,
though; in the case of the Russian heatwave in 2010, for instance,
their significance was less clear [10]. Anomalies in the atmospheric
circulation are often linked to heatwaves. Hot extremes frequently occur
in conjunction with extended high-pressure systems in the northern mid-
latitudes [57] and also in southeast Australia [60]. Although oceanic



circumstances can have an impact on these high-pressure systems, internal
variations in air circulation can also give rise to them [61} 62].

In a changing climate, feedback from land surface conditions, especially
soil moisture availability, can greatly increase the intensity and length
of heatwaves [63]. Because of soil moisture memory and interactions
with the atmospheric boundary layer, reduced soil moisture can decrease
evaporative cooling and prolong heatwave episodes [64]. Because of the
close connection between the land and the atmosphere in these locations,
severe heatwaves and droughts frequently occur together, particularly in
places with transitional climates [65]].

2.1.1 Heatwaves

A heatwave is defined as a string of consecutively hot days that the
temperature exceeds a particular threshold [9]. Heatwaves can have a
substantial impact on several factors, such as energy consumption, the
environment, water resources, agricultural production, and human health
[10]. Prominent heatwaves, such those that occurred in Europe in 2003
and Russia in 2010, claimed a significant number of lives—over 56,000 and
70,000, respectively [9,10]. An additional two days during heatwaves was
found to dramatically enhance the chance of mass heat-related mortality
events by 78% between 1978 and 2006, according to research conducted
in India [66]. High temperatures have the potential to desiccate soil,
which puts plants under more stress and increases the need for watering.
Heatwaves increase demand and decrease efficiency, which puts additional
strain on the electrical infrastructure [13]]. Because urban structures both
absorb and reemit solar radiation, they increase energy consumption and
greenhouse gas emissions, which worsens the consequences of heatwaves
[14]. For example, France had a sharp decline in electricity exports during
the 2003 European heatwave because of the tremendous demand on its
internal energy infrastructure [67]. Scientists predict that water and energy
consumption will rise in tandem with global temperature increases and
the growth of urban regions [15]. Still, there is a lack of knowledge
on the specific effects of rising temperatures on consumption rates and
the anticipated rise in peak energy demand. By the end of the century,
projections show that peak energy consumption in the US might increase
by 7.2% (under the moderate emission scenario known as Representative
Concentration Pathway (RCP) 4.5) to 18% (in the high emission scenario
known as RCP 8.5) [66]. RCPs outline different future possibilities for land
use and emissions [68]. Urbanization is predicted to be a major factor
in this regard since it increases local temperature extremes through the
urban heat island effect. To fully understand the anticipated interaction
between socioeconomic elements and local climate extremes, more research
is required [17]. Heatwaves have become more frequent, prolonged, and
intense on a global scale [69]. Records for temperature set in the 1930s
have been exceeded by recent heatwaves, like those that occurred in Texas
and the midwestern United States in 2011 and 2012 [70]. The Iberian
Peninsula (IP) experienced an excess mortality rate of 3.5% in Portugal



and 8% in Spain due to the August 2003 heatwave [71473] and in June
2007 [15]. Record-breaking temperatures have also been experienced in
California, aggravating the drought, and raising the possibility of wildfires
[74]. Records for hot temperatures are being broken more quickly than
records for low temperatures.

Furthermore, the minimum daily temperature is rising faster than
the highest temperature [23]. This means that the body will be less
able to disperse heat during heatwaves and will be less able to cool
down at night, which will increase the risk of heat-related illnesses and
deaths [75]. Projections suggest that throughout the course of the next
century, heatwaves will continue to increase [15]. Even though there
are international attempts to keep global warming to 1.5 or 2°C by 2100,
regional variations are anticipated in local temperature extremes [13]. By
the end of the century, maximum temperatures are expected to rise by at
least 3°C in several regions, including the Northern Hemisphere, Central
America, and South Africa [76, 77]. In the Arctic, for example, annual
minimum temperatures are predicted to rise by 5.5°C over preindustrial
levels. According to climate projections, there might be more than
thirty additional heatwave days in the tropics and roughly ten to fifteen
more days in the mid to high latitudes, which includes parts of North
America, Europe, and Russia, for every degree Celsius that temperatures
rise [9, [10]. The variety of physical circumstances from year to year and
feedback loops between soil moisture and temperature are the factors
driving the intensification of intense heatwaves brought on by rising global
temperatures [14]. Since there is still a great deal of uncertainty regarding
the length and intensity of local extreme heat episodes as a result of global
warming, more research is necessary.

Many heatwave research ignore the connections between different heat-
wave characteristics like intensity and duration in favor of concentrating on
single indicators [64]. It is essential to look at these traits at the same time
because they are interconnected. Furthermore, elements such as humidity,
airflow, and sun radiation can intensify the effects of heatwaves, result-
ing in heat stress and associated health hazards, especially for vulnerable
groups [23]. It is still difficult to comprehend the cumulative consequences
of extended exposure to extremely high temperatures and heat stress on
human health [24]. Research on heatwave detection and attribution has
connected human factors and global warming to the strongest heatwaves
and their rising frequency in recent years [31]. In fact, in certain areas,
emissions caused by humans have increased the likelihood of the worst-
case scenarios by up to ten times [34]. There are not many studies that
concentrate on attribution, which emphasizes the need for more research
to determine how much human activity affects instances of extreme heat
as well as how human-induced warming affects different elements of heat-
waves, such as their length and intensity [9, 13, |15]. Warming temperatures
brought on by climate change frequently set off a domino effect that makes
other extreme events, such as wildfires or droughts, worse [66]. For ex-
ample, there is a reciprocal relationship between heatwaves and droughts:
heatwaves intensify drought conditions, and severe droughts raise the risk
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of even more violent heatwaves [34],78,[79].

21.2 Drought

One of the problems identified by many when studying droughts is the
definition of drought itself. It is difficult to define drought since different
drought indices measure different aspects of water constraint [11] and
different definitions have been used by different studies. The IPCC report
2022 [80] defines drought as "An exceptional period of water shortage
for existing ecosystems and the human population (due to low rainfall,
high temperature and/or wind". Another study also described drought as
prolonged periods of abnormally dry weather conditions, reducing water
availability for human activities and natural ecosystems [81].

Recent studies have concentrated on identifying and understanding
drought patterns in a rising climate as knowledge of anthropogenic climate
change develops [20, 22]. Research has shown changes in localized patterns
of precipitation and snow cover, and forecasts point to a worldwide
reallocation of precipitation that may have a substantial effect on areas that
are vulnerable to variations in soil moisture [21]. The influence of land
surface moisture on local drought occurrences may change due to shifts
in transitional zones brought about by changes in global climate patterns
[18]. To understand how localized feedback mechanisms and systems may
respond to changes in surface moisture, regional investigations will be
essential. There is a lack of understanding regarding changes in drought
occurrences despite efforts to resolve inconsistencies in research caused
by variations in observational data and approaches accounting for natural
climatic events (such as the El Nifio-Southern Oscillatio) [58]. For instance,
Naumann et al. [19] found that the area of the world impacted by droughts
grew by 8% between the 1980s and the 2000s, although Gaitan et al. [82]
found no evidence of a recent global trend in the frequency of droughts.
This discrepancy highlights how crucial it is to improve the consistency
between observational data and drought indices so that different studies
can get to comparable findings [83]. Furthermore, to handle different
features of dry situations, like snow droughts or deficits in snow water
equivalent (SWE), additional drought characterizations must be created
[23]. Because of the observed and anticipated decreases in snowpack,
snow droughts have become more significant, especially in areas like the
western United States [84]. Margulis et al. [85], for example, found that
between 1985 and 2016 in the Sierra Nevada in the United States, historical
winter warming of 1 to 2°C increased the risk of below-average April 1
SWE quantities from 20% to 40%, respectively [86]. It is important to keep
a watchful eye out for drought conditions in areas that are vulnerable to
temperature changes and likely to experience snow droughts [87]. To better
prepare for a warmer future climate, it is therefore essential to build global
frameworks and indicators for monitoring and describing snow droughts
[88].

In terms of future projections, Cook et al. [89] projected that by the
end of the twenty-first century, compared to the twentieth, soil moisture
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drought events will become more frequent and severe, covering roughly
twice the land area under moderate (based on simulations with CO2
concentrations peaking at 720 ppm) and high emissions scenarios (peaking
at 850 ppm) emissions [90]. Global aridity, or the difference between
precipitation and potential evapotranspiration, is expected to increase by
3.4% for every degree Celsius that land temperatures rise [91]. This would
result in less water being available in drier locations [92]. Global drylands
are predicted to expand by 10-23% between 1961-1990 and 2071-2100
because of the advent of a warmer climate, making up 50-56% of the
planet’s land surface [93]. According to Tigkas et al. [94], there will be a
significant increase in the number of communities suffering from extended
water stress due to this spread of aridity and drylands. The predicted
increase in aridity and the spread of areas vulnerable to drought will
probably increase the frequency of dust storms [95]. These dust storms
can cause health problems and change the hydrology of neighboring and
distant areas. As per Strzepek et al. [96], the existence of dust on snow
or ice can have an impact on the time and pace of melting processes, as
well as the interactions between the ground and atmosphere. Feedback
interactions between the land surface, atmosphere, and biosphere impact
the predicted increase in global aridity and the growth of dryland areas.
Dubrovsky et al. [97] separated the effects of long-term soil moisture
trends on temperature, relative humidity, and precipitation in a changing
climate, highlighting the relevance of land-atmosphere interactions in
causing the expected doubling in aridity. Furthermore, it is anticipated
that the spread of drylands and the frequency of droughts would reduce
soil and vegetation’s ability to absorb carbon, raising atmospheric CO2
levels and accelerating the processes of desertification [98]. Large-scale
deforestation, especially in tropical areas, may also influence the frequency
and intensity of droughts [99]. Nevertheless the above mentioned, it is
still unclear how precisely global warming and natural variability affect
the frequency of droughts [29], particularly on a regional basis. Therefore,
studies targeted at improving our understanding of droughts and natural
variability would improve our understanding of past and future patterns
of drought [30]. Additionally, research must be deepened to understand
how human endeavours like farming, deforestation, and increased water
use affect the frequency and intensity of drought occurrences [32]. Tripathy
and Mishra [100] emphasized the dearth of research on the effects of human
activity on water stress and the importance of comprehending how human
activity affects water availability. Like this, Akhtar et al. [47] stressed how
important it is to consider how humans both contribute to and mitigate
drought circumstances. Understanding the proportional effects of natural
variability, climate change, and human activity on drought occurrences is
crucial to improving regional and global drought management techniques
[101].
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2.1.3 Compound Events

Compound events are the combinations of two or more events involving
physical processes that occur simultaneously or in close succession result-
ing in great impacts that would be expected from individual events occur-
rences [102, 103]. These combined effects have gained significant interest
because, when multiple natural disasters occur in succession, the effects are
often more devastating [41].

Compound drought and heatwaves (CDHWSs) pose a serious threat
to socioecological systems and have often more detrimental effects than
isolated events [104]. Socioeconomic crises, wildfires, agricultural losses,
and an increase in heat-related mortality are some of these effects [105].
Globally, CDHWSs have been more common in recent years, impacting
areas like Europe, the US, South America, Australia, and Asia [106]. Due
to changes in land and vegetation cover, increased sensible heat flux,
and other factors, linked variations in temperature and precipitation are
frequently the result of droughts and heatwaves being interconnected
[107]. Although natural variability contributes to the occurrence of CDHW,
human-induced warming has made these occurrences more intense,
resulting in more widespread and long-lasting heatwaves and droughts
[108]. Due to their substantial effects on socioecological systems, such
as crop production losses, heat-related mortality, and wildfires, CDHW
occurrences have drawn a lot of attention [100]. Several places in the world,
including portions of China, Western Russia, the USA, Australia, and
Europe, have recently experienced heatwaves and compound droughts
during summer months [109]].

Summers 2003, 2010, 2015, 2017 and 2018 in Europe and western Russia,
2012-2014 in the USA, 2013 in Australia, and 2006, 2009-2010, and 2014 in
southwestern and northern China were all recorded for these events [9,
10, 109]. Numerous land surface processes contribute to the formation
of droughts and heatwaves, resulting in varied spatial patterns because
of regional differences in precipitation, anomalies in temperature, and
hydrological changes [34]. These land surface processes are also shaped by
variables like human activity, background aridity, and large-scale climate
trends.

Awareness, adaptations, and resilience are essential for coping with
such compound events [110]. Early warning models, systems, and effective
communication strategies can be very useful in creating more awareness
and avoiding potential disasters and discomfort. People’s awareness,
education, and knowledge can be important factors in reducing the impacts
of compound events.

According to Zscheischler et al. [111] in analysing compound events,
there is no single method dedicated to analyzing compound events because
the type of analysis and approach will depend on the specific situation
and the nature of the compound event. However, depending on the goal,
there may be a need for a combination of many methods/approaches. In
the above paper, some methods/approaches that can be used to analyse
compound events are: regression, multivariate probability distribution,
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correlation coefficient, copula-based approaches, poison process, external
coefficient and the semivariogram, and others were discussed as a possible
way to analyse compound events.

2.2 Concepts from statistical learning

It becomes more difficult for algorithms to find solutions to problems as the
problems they are trying to solve become more complex. In this research,
we shall use one aspect of Artificial Intelligence (AI) known as Machine
Learning (ML) to explore knowledge about the statistical dependencies
between drought and heatwaves in the Iberian Peninsula sub-region.

Artificial Intelligence is the way of developing computer systems to
perform simple to complex problems that require high human intelligence
to solve, such as pattern recognition, decision-making, and problem-
solving [112} 113]. Al systems can be programmed to identify patterns in
data and learn from experience and subsequently improve performance
with time. AI has so many systems and techniques, including Machine
Learning (ML), Computer Vision (CV), and robotics.

Machine Learning (ML) has solved many complex problems across
various industries, including healthcare, finance, and transportation [114].
Some of the critical problems that ML has addressed include image and
speech recognition, natural language processing, fraud detection, and
recommendation systems, to name a few. Machines can now mimic human
cognitive functions thanks to the development of the concept of learning
and the ability to solve complex problems [115]. ML has contributed much
to the studies related to the Earth’s Climate. Building more accurate and
efficient models by researchers [116]. Weather forecasting using satellites
sensor and weather stations data sources [117]. Prediction of natural
disasters such as hurricanes, floods, and wildfires by analyzing data from
sources.

221 Markov chain analysis

After the states have been determined, the following step is to develop a
transition matrix to describe the probability of changing from one state to
another within a certain amount of time. Utilizing the sequence of state
changes that were observed in the dataset from 1950 to 2022, this matrix
is constructed through the process of analysis. It is possible to calculate
transition probabilities based on the relative frequency of each transition
by recording the transition from the starting state to the succeeding state
for each pair of successive observations. This allows for the computation
of transition probabilities.

These assumptions are established to guarantee that the analysis is
conducted by the principles of a Markov Chain [118]]:

The property of Markov: There is a presumption that the future state
is solely dependent on the current state, and not on the sequence of events
that came before it.
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Time Homogeneity: The transition probabilities are considered con-
stant throughout the analysis. While this simplifies the model, it is acknow-
ledged that climate dynamics may introduce time-dependent variations.

A directed graph is used to show the transition probabilities. The nodes
of the graph represent the states, while the edges of the graph reflect the
transitions. To provide a graphical depiction of the Markov Chain, each
edge is given a weight that is determined by the chance of migrating
from one specific state to another. By showing the most likely routes
and potential stable states or cycles within the system, this representation
contributes to a better understanding of the dynamics of climatic state
changes. To illustrate short-term dynamics, the graphs are constructed
for six months, with each subplot representing the transitions that occur
during a single full month. The ability to observe seasonal trends and
the influence of temporal granularity on transition probabilities is made
possible by this temporal resolution.

Through the use of Markov Chain analysis on climate data, this
approach provides a mathematical framework that may be utilised to
comprehend and forecast changes in climatic conditions. This method
offers insights into the chance of several different climatic states occurring,
which enables improved preparedness and response plans for threats
associated with climate change.

By tracking simultaneously the derived series of binary states for
both heatwaves and droughts, we then calculate the frequency of
all possible transitions between the four possible states, (Sy,Sp) =
{(0,0);(0,1);(1,0); (1,1) }. These frequencies are mapped into conditional
probabilities.

P((Su(t+At),Sp(t+At))|(Sp(t),Sp(t))) =

P((Sy(t+1),Sp(t+1));(Su(t),Su(t)))

1)
where At is the time within which the transition occurs. Here we
consider At = 1,2,3,4,5, and 6 months.

2.3 Hamming Distance

The analysis starts with defining states from heatwave and drought
conditions as depicted by SPI-12, employing binary states for computation.
The ‘00" state signifies a normal day without heatwaves or droughts; ‘10
indicates the presence of a heatwave; ‘01 represents a drought, and ‘11’
denotes a compound state of both heatwaves and droughts.

Data transformation is a critical step, where the binary states ‘00’, ‘01,
11’, and “10" are mapped into ‘0" and “1” states for simplification. "00" is
mapped to ‘0’, indicating the absence of heatwave or drought, and any
other value is mapped to ‘1’, signifying the presence of these conditions.
This mapping is applied across all grid points in the 'State_hamming’
column.

To facilitate focused comparison and incorporate spatial context in the
analysis, the dataset is grouped by unique pairs of latitude and longitude.
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This spatial grouping is essential for comparing binary sequences across
different geographic locations.

The generation of unique pairs of grid points is achieved through
Python’s ’itertools’ combination function, ensuring a comprehensive
pairwise comparison across all grid points.

For the computation of Hamming distance, it is essential to ensure
that the sequences being compared are of equal length, truncating them if
necessary. The Hamming distance, calculated using the >hamming’ function
from the ’scipy.spatial.distance’ module, indicates the proportion
of differing bits between sequences. This proportion is converted to
an absolute count of differing bits, providing a quantitative measure of
sequence dissimilarity. The computed distances and their counts are
collected for subsequent analysis.

We take into consideration the Hamming distance[119] between the
heatwave series of binary states and the drought series of binary states.
The Hamming distance is defined for each pair of locations, /; and I, and
it is given by:

Hiogat (1, 12) = \/H3 (1, 1) + H} (1, o) @)
@ @y _ L o n o)
where Hy(S;", S, ):NZ|S1 (i) — Sy ()] (3)
i=1
) o)y _ L5 o) o)
and Hh(sl /Sy ):NZ’Sl (1)—52 (1) (4)
i=1

with Sgd)(i) and Séh)(i) the binary state (0 or 1) with respect to heat-
wave ("h") or drought ("d") at location /1 in day i, and similarly for location
[2. To put it another way, the Hamming distance is a quantitative measure
of sequence dissimilarity that is derived from the proportion of bits that are
different between sequences.

In summary, the concepts from statistical learning, including ML,
Markov chain models, and Hamming distance approaches, provide valu-
able tools for analyzing and understanding the complex relationships
between climatic events. These methods not only enhance our understand-
ing of climate impacts on agriculture, ecosystem vulnerability, and resource
management but also facilitate the development of adaptation and mitiga-
tion strategies. By enabling precise comparisons and identifications of cli-
mate patterns, these statistical tools serve as valuable assets in the study of
climate adaptation and mitigation strategies.

2.4 State of the art

A study relies on the examination of the relationship between precipitation
and temperature, proposing a new method based on dynamical systems
theory to measure the persistence and co-occurrence of these events
[120]. They analysed data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 reanalysis dataset from 1979
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to 2018 for the Mediterranean region. The authors found that specific
regions and processes influence the relationship between temperature and
precipitation, not always reflecting the entire region. Additionally, the
study found that the relationship is sensitive to non-extreme events and
can be used to understand potential future seasonal climate changes in the
Mediterranean region. The authors also identified specific factors that drive
changes in this relationship, such as surface warming.

In another study, Geirinhas et al. use ERA5 reanalysis data to assess
the historical evolution of southeast Brazil’s compound summer drought
heatwave events between 1980-2018. The studies aimed to thoroughly
analyze the surface and weather conditions and the interactions between
the land and the atmosphere that cause single and compound dry and
heat extremes [104]. Daily and hourly periodic meteorological data were
extracted from the European Centre of Medium-range Weather Forecast
ERA5 reanalysis dataset and soil moisture data from the Global Land
Evaporation Amsterdam Model (GLEAM v3.3a). The authors considered
the 80th, 90th, and 95th percentiles, as well as days between 3-4 days, 5-
7 days, and 7+ days, for periods of consecutive by applying a 1st-degree
polynomial to resolve the linear trend to isolate Tmax values from the
global warming effect. A non-parametric Wilcoxon Rank sum test was
computed to assess the importance between data pairs to be tested. It
was discovered that Southeast Brazil, which is the most populated, has
experienced extremely dry and hot conditions. The summers of 2013/14
and 2014/15 demonstrated a clear association between drought and
heatwaves. The interrelationship was influenced by two soil atmosphere
coupling regimes that predominated at different times in both summer
seasons and were characterized by strong evaporative demands, unequal
evaporation levels, and soil moisture availability.

Similarly, with ERA5 reanalysis datasets, [121, [122] were used to
conduct different studies but [121] added more datasets into the studies
(AVHRR satellite data, the European Space Agency’s land cover data
set, leaf area index data, and the ESA-CCI land cover data set). The
study focuses on determining the dangers CHDES poses to vulnerable
populations and assets. A topology-based selection of the case study to
emphasise six common recommendations for studying compound events.
The study concludes that the effects of hot and dry summers on crops
could be intensified by the preceding impacts of dry and bright springs.
The study guidelines will aid in advancing the study of compound events
across multiple fields and industries.

On the other hand, the study examines the different types, common
locations, patterns over time, and changes in location of concurrent and
cascading extreme events in the drylands of Eurasia [122]. The study used a
combination of empirical values and percentile-based indicators to identify
the types, locations, and patterns of these extreme events and found that
the most common types and locations of concurrent and cascading extreme
events are similar. The study found that in high-latitude regions, extreme
winter events are dominated by cold-hot events, making up more than
85 out of 100 of extreme winter events in that area, concurrent extreme
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events have a wider geographic range, and cascading extreme events have
a longer duration.

Compound dry and hot extremes going into significant augmentation
has been a fact for recent decades; it has been a concern for the escalation
of highly unusual anomalies over the southern and northeastern regions
of the United States [123]. By using the Mann-Kendal and Moran’s I
to determine the monotonic trend in relevant variables and the spatial
autocorrelation of the composite extreme occurrences, respectively, the
Cramanalyzedises test was used to assess the changes in distribution as
well. It was known that significant increase in compound dry-hot extremes
in the CONUS over the previous 50 years, compound dry-hot extremes are
mostly caused by heat surplus, and also vigorous emission reduction can
reduce the risks brought on by their rising frequency:.

Climate Research Unit (CRU) TS 4.01 global climate data and European
Climate Assessment Data (E-OBS version 14) were used by [124] to
examine the correlation between the frequency of hot days and nights
in the region’s warmest months and a drought indicator from prior
months. Characterized drought was performed using the Standardized
Precipitation Index (SPI) and the Standardized Precipitation Evaporation
Index (SPEI) in 3, 6, and 9-month time frames. To assess the extent to
which spring and early summer droughts antecede the appearance of
extreme heat months in the Mediterranean. Additionally, the evolution
of droughts in the Mediterranean was thoroughly characterised. There
were clear findings that high (low) NHD/NHN follows negative (positive)
SPEI/SPI warnings. The results imply a certain degree of predictability
of drought indicators and soil moisture data by pinpointing hotspots
that could anticipate a heightened likelihood of extreme events occurring
during the summer heat.

ECAD-EOBS v14 daily dataset and CRU TS4.01 database were used to
calculate NHD and SPEI, respectively. NHD and SPEI joint probability was
calculated by using copula theory. It was shown from the study by [125]
shows that there is spatial heterogeneity over the IP when characterizing
the influence of water deficits on summer temperature in some regions
and also a relation between NHD andprevious SPEI increases from May
to July. Mukherjee et al. [103] employs a cascade modelling framework
to analyze and quantify the complex interactions and cascading effects
between dry and hot climate extremes across global hotspots with GLEAM
v3.3a, ERA5, and NSIDC datasets, enhancing our understanding and
predictive capabilities of these increasingly impactful events.

Other researchers have used machine learning algorithms to investigate
the association between drought and heatwaves [126] and to identify global
hotspots of drought and heatwaves [127]. Random Forest and Gradient
Boosting regression and other machine learning models to predict the
probability of concurrent drought and heatwave events and discovered
that the occurrence of drought and heatwave events was highly dependent
on the geographical location and that machine learning algorithms were
effective in predicting these events [126].

Cardoso Pereira et al. [128] utilize high-resolution climate simula-
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tions to forecast a significant reduction in annual precipitation and altered
precipitation patterns on the Iberian Peninsula, potentially exacerbating
drought conditions and impacting water resource management under the
RCP8.5 scenario, Barbosa & Scotto analysed ERA5-Land reanalysis com-
pared to station data from European Climate Assessment (ECA&D) data to
describe extreme temperature events in the Iberian Peninsula using an ex-
treme value model with normal distribution for the bulk distribution and
Generalized Pareto Distribution for the upper tail estimation at each point
[129]. However, the researchers ignored the spatial dependencies and also
considered short-length time series data. Garcia-Valdecasas Ojeda et al.
[21] used the Weather Research and Forecasting (WRF) model driven by
two global climate models (GCMs), CCSM4 and MPI-ESM-LR, to simu-
late future climate scenarios. They analyzed drought characteristics on the
Iberian Peninsula using two drought indices—the Standardized Precipit-
ation Evapotranspiration Index (SPEI) and the Standardized Precipitation
Index (SPI)—over different time scales and under two Representative Con-
centration Pathways (RCP4.5 and RCP8.5). This comprehensive approach
allowed them to project changes in drought frequency, duration, and sever-
ity across various future periods.

The studies utilize various methodologies, such as threshold and indic-
ator methods, Mann-Kendal, Moran’s I, and copula theory, Metrics R, Lag-
rangian Analysis, copula theory, machine learning algorithms and several
estimations criteria to investigate various relationships, occurrences, correl-
ations, and interactions among many climate events such as drought, heat-
waves, rainfall, and others. There have been several studies, and few are
considered above, which investigate various events separately and some
combined. The papers also utilize different datasets, including CRU, UDEI,
GLEAM, PGF, ERAS5 reanalysis, AVHRR satellite data, and land cover data,
to examine the occurrence and impacts of concurrent extreme events.

Most of the studies use ERA5 [103}, (104, [120H122, [130], CRU [[124] [125|,
131]], and GLEAM datasets in their investigations. All of the studies show
how physical processes like weather patterns, precipitation, soil moisture-
temperature feedback, and modes of variability can cause multiple extreme
events to happen at the same time. It is also important to think about the
duration and dynamics of multivariate processes when figuring out what
effects they have. Additionally, the studies emphasize the need for further
research on concurrent extreme events and their dependencies to improve
understanding and preparedness for their impacts.

Although several machine learning methods have been used by many
researchers to analyse the climate and proved to be very effective such
of the methods that have been applied are Random Forest and Gradient
Boosting regression [126], Convolutional Neural Network (CNN) [132],
Support Vector Machine (SVM) [133] and others. Other researchers have
used other methods, such as probabilistic approaches like the Markov
chain models and hamming distance approaches. Markov chain models,
extensively used to analyze the dynamics and probabilistic nature of
climate events, have been effectively applied in various contexts. Yeh et
al. [134] analyzed drought characteristics in southern Taiwan using SPI
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(Barbosa & Scotto, ERAb5-Land reanalysis Iberian Peninsula
2022) ([129])

(De Luca et al., ERAD reanalysis Mediterranean
2020) ([120])

(Geirinhas et al., ERA-5 reanalysis Southeast Brazil
2021) ([104])

(Bevacqua et al., ERA-5 reanalysis —

2021) ([121)])

(Alizadeh et al., ERAD reanalysis Eurasian

2020) ( [122])

(Alizadeh et al., Climate Divisional Contiguous United States
2020) ( [123]])

(Russo et al., 2019) Climatic Research Unit Mediterranean
([124]]) (CRU)

(Ribeiro et al., ECAD-EOBSvl14dailyt Iberian Peninsula
2020) ( [125])

(Tuel et al., 2022) ( ERADb reanalysis, EOBS  Europe

[7301)

(Mukherjee et al., ERADS reanalysis, Gleam  Global

2023) ([103])

(Zhang et al., Bio-ORACLEand China

2020) ( [126]]) GMED

(Cardoso Pereira et  ECA&D Iberian Peninsula
al., 2020) ( [128])

Table 2.1: Key research papers considered in state of the art

and RDI, similarly Markov chain models have been used in analyzing
drought class transitions, using a case study with rainfall data from
Southwest China to demonstrate spatial heterogeneity, though it finds
no clear evidence of spatial dependency [135]. Alam et al. [136]
forecasted agricultural droughts in the Barind region through spatial
mapping. These studies illustrate Markov chains” utility in modelling
climate dynamics. Hidden Markov Models (HMM) have provided a more
probabilistic understanding of drought transitions compared to traditional
indices, as demonstrated by Yoo et al. [137]. Markov Chain Monte Carlo
(MCMC) methods have outperformed bootstrapping in estimating the
uncertainty of multivariate quantiles for hydrometeorological extremes,
showing significant benefits in small sample scenarios [138] Further
research includes the assessment of ecosystem impacts due to heatwaves
and droughts, where heatwave dynamics were explored in the eastern
Mediterranean, indicating high intrinsic predictability by Hochman et al.
[139]. Studies like Cao and others [140] used multiple Markov chains for
drought prediction in the U.S., highlighting the importance of Markov
models in drought management. A comprehensive review of compound
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extremes involving droughts and heatwaves was conducted by Afroz et al.
[141] using probabilistic quantifications in examining the variables, drivers,
and impacts of these events, providing a holistic view of climate extremes.
Javadinejad et al. [142] employed Markov chain models to forecast drought
occurrences in southeast Iran, demonstrating their practical utility in arid
climate management.

Hamming distance, a measure of similarity, has been extensively
used in various climate studies to analyze weather station data [143],
identify regions with similar heatwave patterns, and assess ecosystem
vulnerability to climate changes. This section consolidates the usage
of Hamming distance across multiple studies, highlighting its role in
understanding and adapting to climate-related challenges. The methods
have been applied in many fields such as biological, chemical, energy and
biochemical [144] fields as well, Pirot et. al. [145] used the same method
in topology as a low-scale topological indicator to quantify dissimilarities
between geological models by summing the absolute differences in their
adjacency matrices, aiding in the assessment of uncertainty and variability
in geological predictions. In another study by Raoult and others [146] to
compare the bit vectors of wavelet-based fingerprints of meteorological
fields, determining their similarity to facilitate the fast retrieval of weather
analogues from a multi-petabyte archive. In Identifying Heatwave Patterns
by Kalu et al. [147] utilizes Hamming distance as a similarity measure to
cluster weather station data. This method identifies regions with similar
heatwave patterns, crucial for understanding the impacts of heatwaves on
agricultural productivity, thereby aiding in the development of targeted
agricultural strategies.

On the other side, another study on drought with satellite data employs
Hamming distance to analyze the temporal profiles of the Vegetation
Condition Index (VCI) time series. This application allows for the effective
identification of drought-affected regions, enabling timely interventions
and drought management strategies [148]. The same method is applied
as a measure of similarity to evaluate comprehensive drought in the
Qucun Yellow River Irrigation Region by comparing different drought
assessment models and integrating relative membership degrees in a fuzzy
decision framework, enhancing the accuracy and reliability of drought
level evaluations [149].

A study was conducted to assess ecosystem vulnerability by using
Hamming distance to quantify the dissimilarity between current and future
climate conditions. This assessment helps in evaluating the vulnerability
of ecosystems to climate change, including the impacts of droughts and
heatwaves, thus facilitating the development of adaptation and mitigation
measures [150]. The hamming distance was used in measuring the
dissimilarity between two products by calculating the number of differing
positions in their binary representations of snow presence, providing a
normalized value that reflects the degree of agreement or discrepancy
between these satellite observations in monitoring wet snow coverage
[151]. Hamming distance was applied directly to compare vegetation
index time series across different regions. This facilitates the identification
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and monitoring of drought patterns, providing essential data for drought
response planning and resource allocation [148]. The application of
Hamming distance across these studies demonstrates its versatility and
effectiveness in enhancing our understanding of climate impacts on
agriculture, ecosystem vulnerability, and resource management. By
enabling precise comparisons and identifications of climate patterns,
Hamming distance serves as a valuable tool in the arsenal of climate
adaptation and mitigation strategies.

2.5 Conclusion

Researchers emphasized the significance of physical processes, atmo-
spheric patterns, precipitation, and soil moisture-temperature feedback in
shaping these events. They stressed the need for continued research to
enhance preparedness and understanding of concurrent extreme events
and their dependencies. In this tale of scientific exploration, researchers
from various disciplines joined forces to uncover the intricate web of com-
pound extreme events, pinpointing the importance of an interdisciplinary
approach. The collective efforts shed light on the complex relationship
between weather phenomena, identified vulnerable regions, and offered
vital insights for better preparedness and mitigation strategies. Through
numerous studies, researchers have made much effort to explore the ef-
fects and relationship between extreme weather events, such as droughts
and heatwaves, and the factors driving them. Although much effort has
been made, understanding these relationships and various extreme events
continues to be a challenge needing a continued and clear explanation.
Utilising various datasets and methodologies, they have identified specific
regions, processes, and physical factors that influence these events. The
studies highlight the need for further research to understand and prepare
for the impacts of compound extreme events. By unravelling the complex-
ities of these events, scientists strive to protect communities and assets in
the face of a changing climate.
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Chapter 3

Data and Methodology

3.1 Data

3.1.1 Data Download

The first stage of our analysis involved acquiring the necessary data. The
data was downloaded from the ERA5 dataset using the CDS API The
dataset contains daily means of total precipitation and 2m temperature
from 1950 to 2022 for the Iberian region.

The ERA5 dataset - a global atmospheric reanalysis produced by
the European Centre for Medium-Range Weather Forecasts (ECMWEF)-
provides a wealth of meteorological variables, including temperature
and precipitation, at a daily resolution. The Climate Data Store (CDS)
API, an ECMWEF service enabling users to programmatically access and
download the datasets, was used. To automate this process, a Python
function which specifies the years, months, days and hours for the request
to be sent was created. The function initiates a new instance of the
CDS API client and generates a list of years to retrieve data. The
default range from 1950 to 2022 was set with a fine spatial resolution
of 0.25 degrees, which can be easily adjusted by changing the function's
parameters. The function then sends a data retrieval request to the
ERAS5 dataset. The data for the 'total_precipitation' and 2m_temperature'
variables for each month of the specified years was then retrived. For
each day, each hourly data is downloaded and requested in 'netcdf
format. The geographical area was also specified, setting the boundaries
to encompass the Iberian Peninsula, with coordinates [44, -10, 36, 4]
representing the North, West, South, and East boundaries, respectively.
Upon successful retrieval, the data is saved as a NetCDF file named
"ERAS5_daily_data_Iberian_Peninsula_year_month.nc”. Each file contains
data of each year’s unique month records. These files contain all the
requested data and are the starting point for our subsequent analysis.

After successfully downloading the ERA5 dataset, the next step in
the analysis was to load and preprocess the data. A Python function,
‘load_data()’, is created to automate this process. This function begins by
loading the data from the NetCDF files 'ERA5_temperature_data_iberian.nc'
using the ‘xr.open_dataset()” function from the xarray library. This func-
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tion reads the file and returns an xarray. Dataset object, which is a multi-
dimensional, in-memory, array-based dataset. After loading the data, the
function checks if the dataset is empty. If the dataset is empty, it raises a
ValueError with a message indicating that the dataset is empty and sug-
gesting checking the file path or content. Next, the function converts the
xarray.Dataset object to a pandas DataFrame using the ‘to_dataframe()’
method. This method flattens the multi-dimensional dataset into a 2D
table, making it easier to manipulate and analyze the data. Finally, the
function checks if the resulting DataFrame is empty. If the DataFrame is
empty, it raises a ValueError with a message indicating that the DataFrame
is empty and suggesting to check the dataset. If all checks pass, the func-
tion returns the DataFrame. This Dataframe contains all the data from the
ERAD5 dataset, ready for further analysis.

3.1.2 Data Preprocessing

After acquiring the necessary data, the next step was to preprocess the
data to ensure it was in a suitable format for analysis. A Python function,
‘preprocess_data(data)’ was created to automate this process. Since the
interest of the study is based on daily means, daily means were calculated
from the hourly means, which gives a true representation of daily means.

Temperature Conversion

The ERAS5 dataset provides temperature data in Kelvin. However, for
ease of understanding and analysis, we converted the temperature data to
Celsius using the formula ‘C = K - 273.15°, where ‘C’ is the temperature in
Celsius and ‘K’ is the temperature in Kelvin.

Outlier Detection and Handling

We assumed that the temperature data follows a Gaussian distribution
and used the Z-score method for outlier detection. A Z-score measures
how many standard deviations an element is from the mean. Any data
point with a Z-score greater than 3 was considered to be an outlier.

If any outliers were found, they were replaced with NaN and then the
forward fill method to fill them. If no outliers were found, a message was
printed to confirm this.

3.1.3 Nature of Data

Descriptive statistics, histograms, and correlation calculations were per-
formed on the data. A scatter plot for temperature vs total precipitation
was also plotted.

3.2 Heatwaves

In the context of this comprehensive climate study using the ERA5 dataset,
we conducted an in-depth analysis of heatwave conditions. Heatwaves,
characterised by extended periods of excessively hot weather, often
accompanied by high humidity, have significant implications for both the
environment and public health [152].
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This section provides a detailed methodological approach for identify-
ing heatwave events within a climate dataset. This process is well-designed
to capture heatwave occurrences based on temperature anomalies, employ-
ing a series of computational steps tailored to refine the detection criteria.
Below, each step is explained and rationalized within the context of the
study:

Calculation of Daily 90th Percentile Temperatures

A key step in the method is the calculation of the 90th percentile
temperature for each day of the year across all included years. This
is achieved by finding the 90th percentile temperature for each day of
the year. The resultant series represents the 90th percentile temperature
for each unique day, serving as a threshold to identify unusually high
temperatures, indicative of extreme weather events.

Calculation of the 90th Percentile Threshold Over a Rolling Window on
the Daily 90th Percentile

The initial step involves calculating a dynamic threshold for heat-
wave detection by employing a rolling window technique on the
Daily_90th_percentile temperature data [153]. The choice of a 31-day
window, centered around each day enables the inclusion of a broader tem-
poral context in setting the threshold. This method adjusts for seasonal and
interannual variability, ensuring the 90th percentile threshold reflects the
climatological norms and anomalies for each period. The quantile calcula-
tion at 0.9 within this window identifies the temperature above which only
the top 10% of extreme temperature values fall, setting a rigorous bench-
mark for heatwave conditions.

Identification of Days Above the 90th Percentile

By comparing daily average temperatures (temperature) against the calcu-
lated 90th percentile threshold, the function flags days where temperatures
exceed this critical value. This binary classification (is_above_90th) serves
as a preliminary filter for potential heatwave days, isolating instances of
abnormal heat.

Calculation of Rolling Sum to Identify Sequences of Abnormal Temper-
ature Days

There is a further refinement of the identification process by calculating a
rolling sum of days flagged as exceeding the 90th percentile threshold over
a 5-day window, with a minimum of three days required (min_periods=3).
This step ensures that only sustained periods of abnormal temperatures are
considered, aligning with the definition of heatwaves as events that persist
for several days.
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Heatwave Day Identification

A critical part of the function is the determination of actual heatwave
days. This is achieved by evaluating whether the rolling sum of abnormal
temperature days equals 5 within the predefined window, indicating a
continuous sequence of high temperatures typical of a heatwave. This
condition ensures the detected heatwaves reflect significant and prolonged
periods of heat stress.

Adjustment for Brief Interruptions in Heatwave Conditions

Recognizing the dynamic nature of heatwaves, the function includes a
mechanism to account for brief interruptions in heatwave conditions. It
retrospectively assesses sequences where a heatwave might be interrupted
by one or two days of relatively cooler temperatures but is immediately
followed by a return to heatwave conditions. This adjustment ensures the
continuity of heatwave identification, accounting for minor fluctuations
in temperature that do not significantly break the overall pattern of a
heatwave.

Final Classification and Cleanup

The last step concludes by mapping the boolean heatwave flags to a
more descriptive ‘yes’/'no” format, facilitating easier interpretation and
analysis of the results. Additionally, the DataFrame is cleaned by removing
intermediate calculation columns no longer needed for further analysis,
streamlining the dataset for subsequent use.

This sequence of operations represents a comprehensive and scientific-
ally grounded approach to heatwave detection, emphasizing the import-
ance of both intensity and duration in defining such events. Each step is
carefully calibrated to ensure the accurate and meaningful identification of
heatwave occurrences, contributing valuable insights into the study of cli-
mate patterns and extremes. Figurg3.1]below shows the time series of av-
erage temperature at a single grid-point indicating heatwaves as well and
Figure3.2 throws more emphasizes on the 2003 climate year.
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Average Temperature and Heatwaves Days 1980-2022 (lat: 36.75 lon: 2.5 )
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Figure 3.1: Temperature Trend with Heatwave Indicator using 31-day moving
window (1950 to 2022).
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Figure 3.2: Temperature and Heatwave trends in 2003.

3.3 Drought

In our analysis of the ERA5 dataset, we conducted a drought analysis to
identify periods of abnormally low rainfall. Drought is typically char-
acterised as a prolonged period of significantly below-average precipita-
tion, leading to water shortages [81]. To quantify the drought, we used
the Standardized Precipitation Index (SPI) and Standardized Precipitation-
Evapotranspiration Index (SPEI), widely accepted indices that measure to
measure drought conditions. The SPI/SPEI indices can be calculated in dif-
ferent time scales (e.g., 1,2,3,6,12, and 24 months) and each time scale can
be used to represent a different type of drought as follows:
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3.3.1 SPI/SPEI time scales

e 1-Month Scale (SPI-1 and SPEI-1): Reflects immediate moisture con-
ditions, sensitive to short-term precipitation anomalies and meteoro-
logical events. SPEI-1 additionally accounts for potential evapotran-
spiration (PET), making it sensitive to both precipitation deficits and
temperature-induced increases in evaporation.

* 2-Month Scale (SPI-2 and SPEI-2): Useful for monitoring short-term
drought conditions, these indices integrate precipitation and PET
over two months, providing a detailview of recent weather impacts
on moisture levels.

* 3-Month Scale (SPI-3 and SPEI-3): Aimed at assessing seasonal
or short-term drought impacts, particularly in agricultural settings.
While SPI-3 focuses solely on precipitation, SPEI-3 includes PET to
better reflect the effects of both rainfall and evaporation trends.

e 6-Month Scale (SPI-6 and SPEI-6): Indicates medium-term trends
in moisture conditions, essential for planning in agriculture and
water resource management. This scale is particularly valuable for
understanding moisture availability across growing seasons.

¢ 12-Month Scale (SPI-12 and SPEI-12): Captures long-term trends in
moisture conditions, integrating a year’s worth of precipitation and
evapotranspiration data. These indices are crucial for analyzing
hydrological drought and its broader impacts on water systems,
making them particularly relevant for long-term water resource
management and policy planning.

* 24-Month Scale (SPI-24 and SPEI-24): Provides insights into exten-
ded moisture and precipitation trends over two years, essential for
assessing the impact of climate variability and change on hydrolo-
gical conditions.

The SPI values were computed with 3, 6, and 12 month windows,
resulting in a time series of SPI-3, SPI-6, and SPI-12 values. After getting
the SPI-12 values, the values are classified into various drought conditions.
The Table 3.1| gives the details of the drought categories based on the SPI
values.

For example, SPEI-12 can record long-term moisture patterns, which
consider both decreased rainfall and increasing evaporation. This is
an extremely important factor to consider when dealing with changing
climatic circumstances. Due to this, SPEI is especially important in regions
where the circumstances of drought are being made worse by rising
temperatures. When the SPEI values are classified into drought categories,
it provides a comprehensive assessment of the severity of the drought by
taking into consideration both the reduced amount of precipitation and
the increased amount of evapotranspiration. Within the current context
of global warming, this dual concern is of the utmost importance.
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Class SP1/SPEI Values
Extremely wet | 2.0 or more

Very wet 1.5t02.0
Moderately wet | 1.0 to 1.5

Mild wet 0to 1.0

Near normal -1.0to 0
Moderately dry | -1.5 to -1.0
Severely dry -20to-1.5
Extremely dry | -2.0 or less

Table 3.1: Drought Classifications

3.3.2 Drought Classifications

The values in the Table [3.1 are used to classify the severity of drought or
wet conditions based on SPI/SPEI values:

Extremely wet (2.0 or more): This indicates an exceptionally high
amount of precipitation much greater than the average.

Very wet (1.5 to 2.0): This shows a very high amount of precipitation
significantly above the average.

Moderately wet (1.0 to 1.5): This signifies an above-average amount
of precipitation.

Mild wet (0 to 1.0): This represents a slightly higher than average
amount of precipitation.

Near normal (-1.0 to 0): This category indicates a near-average
amount of precipitation.

Moderately dry (-1.5 to -1.0): This shows a slightly below-average
amount of precipitation, suggesting a mild drought.

Severely dry (-2.0 to -1.5): This indicates a significant lack of
precipitation, indicating a severe drought.

Extremely dry (-2.0 or less): This shows an extreme lack of precipita-
tion, indicating an extremely severe drought.

The SPI and SPEI are crucial in drought monitoring and early warning
systems, both are very in drought analysis and this work puts more
attention to use SPI. As such, the measures and their classification play
a significant role in understanding climate variability and its impacts.
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3.4 Markov Chain

3.4.1 Application of Markov Chains to Analyze Climate State
Transitions

This section provides an overview of the use of Markov Chain analysis
to the study of transitions between specified climatic states, with a
particular emphasis on heatwaves and drought situations. The analysis
and prediction of state transitions based on observed climate data is
accomplished through the utilisation of a Markov Chain, which is a
stochastic model that describes a sequence of possible events in which the
probability of each event is purely dependent on the state that was attained
if came before it.

Our dataset comprises records of heatwave occurrences and drought
conditions, quantified using the Standardized Precipitation Index (SPI) and
also the Standardized Precipitation Evapotranspiration Index (SPEI) over
intervals of 3, 6, and 12 months, alongside timestamps. The initial step
involves mapping these records to discrete states based on the presence or
absence of heatwaves as well as drought. A method is designed to classify
each record into one of four states: 00" (no heatwave, no drought), ‘01" (no
heatwave, drought), 10" (heatwave, no drought), and "11” (heatwave and
drought). The creation of a finite state space, which is required for Markov
Chain analysis, is made possible by this categorization. This space enables
the study of transitions between various states over time.
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Chapter 4

Results

This chapter presents the findings of the analysis aimed at understanding
the climate patterns of the Iberian region, with a particular focus on
drought and heatwave events from 1950 to 2022. This study began on a
methodological journey, applying advanced statistical and computational
approaches to explore the relationship between climatic extremes. The
dataset that was used for this study was the ERA5 dataset. The objectives
presented in the earlier sections served as a guide for the analytical
procedures throughout this study. The primary objective was to discover
the temporal dynamics and the relationship between the most important
climatic variables, namely temperature and precipitation, and how these
variables contribute to extreme compound weather events. Some of the
things that are talked about in this chapter are drought analysis using the
Standardised Precipitation Index (SPI) and the Standardised Precipitation-
Evapotranspiration Index (SPEI), heatwave detection using temperature
anomalies, and Markov Chain analysis to look at how the climate changes
over time. A structured narrative that integrates theoretical notions with
empirical findings is presented in each section of this chapter. Several levels
of complexity are present in climate data, and the purpose of each part of
the process is to discover those layers.

This analysis lays the groundwork for more in-depth research into cli-
matic phenomena. The first portion provides a foundational understand-
ing of the climatic conditions that are present in the Iberian region by focus-
ing on the general features of the data on temperature and precipitation. In
the following step, the findings of the drought analysis are provided, which
provide information on the frequency, length, and intensity of drought
events as measured by the SPI and SPEI indices. This section investigates
the incidence of heatwaves and their temporal distribution and severity
to provide light on the continuously shifting dynamics of situations char-
acterised by severe temperatures. Following that, the chapter moves on
to the results of the Markov Chain analysis, which is a novel approach in
this study. The purpose of this analysis is to gain an understanding of the
probabilistic transitions that occur between various climatic states, with a
particular emphasis on the interaction between temperature extremes and
drought conditions. Using this technique, one may gain a forward-looking
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view of the possibility of projecting climate alterations within the region.
The section also contributes to a more complex knowledge of climatic vari-
ability and extreme weather events that occur on the Iberian Peninsula.
The findings that are reported are examined in the context of their con-
sequences for climate science, the design of policies, and adaptive measures
in response to the effects of global climate change.

4.1 Descriptive Statistics

After acquiring the data, a preliminary analysis was performed to under-
stand the basic characteristics of our dataset. We used the ‘describe()’
method in Python, which provides a summary of the central tendency, dis-
persion, and shape of the dataset's distribution, excluding ‘NaN" values.
The “describe()’ method was applied to the dataframe, which contains
two variables: "Total Precipitation' (in m) and 'Temperature' (in °C) of the
daily data of the study area. The method returned the following statistics:

Description Precipitation (mm) | Temperature (°C)
Count 50,153,100 50,153,100

Mean 1.8754 14.9257300
Standard Deviation 4.8024 6.3889400
Minimum Value 0.0000 -21.8978300

25th Percentile (Q1) 0.0000 10.7760800
Median (50th Percentile, Q2) | 0.0424 14.9534700

75th Percentile (Q3) 1.2006 19.4715900
Maximum Value 203.1700 38.6434300

Table 4.1: Statistical Summary of Daily Average Temperature and Accumulated
Precipitation

Description Precipitation (mm) | Temperature (°C)
Count 26,663 26,663

Mean 1.3273 17.863832
Standard Deviation 4.2425 4.810658
Minimum Value 0.0000 1.490685

25th Percentile (Q1) 0.0000 13.792804
Median (50th Percentile, Q2) | 0.0177 17.057856

75th Percentile (Q3) 0.5734 22.319162
Maximum Value 129.8086 29.713526

Table 4.2: Statistical Summary of Average Daily Temperature and Accumulated
Precipitation Latitude:40.0 Longitude:2.0

The average daily temperature is estimated to be around 14.93°C,
suggesting the possibility of a temperate climatic zone or a composite of
other climate zones that have been averaged. With a standard deviation
of around 6.39°C, temperature variation is substantial. This may be
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the result of seasonal variations in the data, which is extremely wide
in temperature, ranging from a minimum of -21.90°C to a maximum of
38.64°C. The existence of these exceedingly high temperatures implies
that the dataset potentially encompasses many seasons. The average
precipitation is an extremely meagre 1.88 millimetres. Although the
standard deviation for precipitation is 4.80 mm, it remains below the
mean value, suggesting minimal unpredictability in precipitation. The
precipitation ranges between a low of 0.00 mm and a maximum of 0.20317
mm in magnitude. The observed peak value deviates considerably from
the average, indicating the possible existence of exceptional precipitation
occurrences. The 75th percentile for precipitation is established at 1.20 mm,
which signifies that the 75th percentile of the records has precipitation of
little more than or equal to this amount. This further supports the notion
that the climate is usually arid or that the dataset has several dry spells.

This is important as it can provide insights into how these two
variables interact, which is fundamental in climate studies. To achieve
this, the correlation is calculated between the "Temperature (°C))' and "Total
Precipitation (m)' columns in our dataset. The correlation was computed
using the corr() method, which provides the Pearson correlation coefficient,
a measure of the linear relationship between two variables. The result
of our correlation computation is -0.1581. This value indicates a weak
negative relationship between temperature and total precipitation. In
the context of our dataset, this suggests that as the temperature slightly
increases, the accumulated precipitation slightly decreases, and vice versa.

In the continued elaboration of the ERA5 dataset, we sought to un-
derstand the temporal trends in temperature and total precipitation. This
involved examining how the average temperature and total precipitation
changed every year.

Comparative Analysis

The mean temperature at a single grid point (latitude 40 and longitude 2)
is higher (17.86°C) compared to the whole region’s mean (14.93°C), this
shows that the area data has variability in nature. The standard deviation of
temperature at the single grid point is lower (4.81°C) than that of the whole
region (6.39°C), indicating less variability in temperature and potentially
a more stable climate at this grid point. Particularly noticeable in the
region-wide data are the temperature extremes, including the minimum
temperature (-21.90°C), which is far lower than the lowest temperature
recorded at a single grid point (1.49°C). The somewhat lower average
precipitation at the single grid point compared to the region may indicate
that this grid point is, on average, drier than the region. At the single
grid point, the standard deviation of precipitation is somewhat smaller,
suggesting a reduced degree of unpredictability in precipitation quantities
in comparison to the entire region. The fact that the highest precipitation
value at the single grid point is lower than that of the entire region indicates
that other areas of the region experience more extreme precipitation
occurrences. In comparison to the general region, the temperature and
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precipitation at the single grid point appear to be less variable, rendering
it warmer and drier. The diversity of climatic conditions across all grid
points is reflected in the broader range of temperature and precipitation
values for the whole region. This includes places characterised by cooler
temperatures and more severe precipitation occurrences. This comparison
may serve as an indication of microclimate influences specific to the
individual grid point, or it may be a result of the location’s geographical
attributes (e.g., proximity to a city, coastline, or higher elevation) in contrast
to the entire region. Similarly, the correlation computation for the single
grid point is computed and it is -0.1080 which is a little higher compared to
-0.1581 for the whole region.

Scatter Plots of Temperature and Precipitation

Scatter Plot of Average Temperature vs. Total Precipitation
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Figure 4.1: Scatter Plot of Average Temperature vs Total Precipitation
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Scatter Plot of Average Temperature vs. Total Precipitation lat:40.0 lon:2.0
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Figure 4.2: Scatter Plot of Average Temperature vs Total Precipitation for a single
grid point

The scatter plot illustrates the correlation between the total precipitation
and the average temperature. The graphic portrayal prompts the following
observations:

* The data point density is significantly greater in the vicinity of
lower temperatures and precipitation levels. This indicates that a
considerable proportion of observations correlate less precipitation
with lower temperatures.

* Most of the precipitation values exhibit a concentration at the
lower extremity of the scale, accompanied by a limited number of
occurrences with greater precipitation. This may suggest a reduced
frequency of heavy precipitation occurrences.

¢ A limited number of data points exhibit high precipitation levels that
deviate significantly from the overall trend observed in most of the
data. These may symbolise severe meteorological phenomena, such
as heavy rainfall or storms.

* At the specific grid location (add location here), lower precipitation
levels are seen more often, as shown by the single grid scatter
figure. The single grid scatter plot has fewer data points over the
temperature range than the total region, indicating less temperature
fluctuation.

* The grid point scatter plot shows reduced precipitation with fewer
high values. This matches the data summary showing a lower grid
point mean and maximum precipitation.
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¢ In contrast, the plot for the entire region scatter plot revealed more
precipitation values, including greater extremes as expected.

¢ Temperature does not appear to be linearly related to precipitation
in either scatter plot. The grid-point-specific plot revealed less
precipitation variability than the region-wide plot, which indicated
a modest rise with higher temperatures.

Yearly Average Temperature Over Time

The first part of this analysis involved plotting the yearly average
temperature over time for the all region. This was done by grouping the
data by year and calculating the mean temperature for each year for all the
region. The resulting time series was then plotted using a line plot, with
each data point represented by a circle marker.
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Figure 4.3: Yearly Average Temperature Over Time, AT=1.673

The resulting plot provides a clear visual representation of how the
average temperature has changed over time. The x-axis represents time
(in years), and the y-axis represents the average temperature (in degrees
Celsius). AT= 1.673 shows that with time the average temperature in the
Iberian Peninsula is significantly getting higher.

Total Precipitation Over Time

A similar analysis was performed for the daily mean precipitation over
time.
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Daily Precipitation Over Time (lat = 41.25, lon = -0.25)
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Figure 4.4: Daily Total Precipitation Over Time

4.2 SPI/SPEI Climatology
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The resulting plot provides a clear visual representation of how the daily
precipitation has changed over time. The x-axis represents time (in years),
and the y-axis represents the daily precipitation (in millimetres).
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Figure 4.5: Temperature Climatology of the Iberian Peninsula
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Seasonal Average Temperature over the Iberian Peninsula
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Figure 4.6: Seasonal Temperature Climatology of the Iberian Peninsula
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Figure 4.7: Precipitation Climatology of the Iberian Peninsula
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Standardized Precipitation Index (SPI) Over time(lat 41.25, lon -0.25)
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Figure 4.8: Standardized Precipitation Index (SPI-3,6,12) of a Selected grid point
in the Iberian Peninsula Over Time using.

Standardized Precipitation-Evapotranspiration Index (SPEI) Over Time(lat 41.25, lon -0.25)
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Figure 4.9: Standardized Precipitation-Evapotranspiration Index (SPEI-3,6,12)
Over Time using.

Figurd4.§8 and [£.9 are time series graph of the Standardised Precipita-
tion Index (SPI 3,6,12) and Standardized Precipitation-Evapotranspiration
Index (SPEI 3,6,12)for a specific location (latitude 41.25, longitude -0.25).
Drought monitoring and climate studies use these indices to quantify pre-
cipitation deficits over time. The graphs show fluctuations from 1950 to
2022. Blue areas indicate positive values, where precipitation was above
the median for the period and red areas indicate negative values, where
precipitation was below the median. The y-axis shows the SPI/SPEI value
scale from -2 to +2. Positive SPI values indicate higher precipitation (wetter
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conditions), while negative values indicate lower precipitation (drier con-
ditions). Multiple years of negative SPI values indicate a drought. Similar
clusters of positive SPI values indicate wet periods as well as the SPEI.

4.3 Monthly states of random grid points

The following figures provide a detailed visual representation of the
temporal pattern of heatwaves and droughts from 1951 to 2022 in specific
regions monthly. By observing data from selected grid points, the figures
offer valuable insights into climate variability and changes over the
years. Each figure represents data from different periods and geographical
coordinates, with various extreme events illustrated using distinct markers.
Yellow squares represent heatwaves, dotted squares indicate drought
months, and red squares with asterisks symbolize compound events - the
simultaneous occurrence of heatwaves and droughts. Trends, seasonality
of events, frequency, duration and the variability of these extreme climate
conditions can be observed.
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Figure 4.10: Monthly State values over years Heatwaves and Drought (SPI-12)
1951 - 1979 latitude: 37.0 longitude: -6.0
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Monthly State over years Heatwaves and Drought(SPI-12) 1976 - 2001 (lat:40.0 lon:0.0)
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Figure 4.11: Monthly State values over years Heatwaves and Drought (SPI-12)
1975 - 1999 latitude: 37.0 longitude: -6.0

Monthly State over years Heatwaves and Drought(SPI-12) 2002 - 2022 (lat:40.0 lon:0.0)
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Figure 4.12: Monthly State values over years Heatwaves and Drought (SPI-12)
2001 - 2022 latitude: 37.0 longitude: -6.0

The Figure - show the the temporal pattern of heatwaves
and droughts between 1951 and 2022 in the region, taking some random
grid points, providing important information on climate variability and
change. The data reveals important patterns with substantial implications
for environmental management and policymaking. Heatwaves, shown by
yellow squares in the visualizations, have noticeably increased throughout
the years, especially in the late 20th century and the first two decades of
the 21st century. This observation is consistent with worldwide patterns
and strengthens the story of a globe experiencing rising temperatures [154].
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Heatwaves exhibit a distinct pattern of seasonality, mainly happening
during the summer months, with occasional occurrences in spring and fall,
aligning with the anticipated seasonal occurrence of these events.

The frequency and duration of drought months, represented by
dotted squares, show some variability but demonstrate a noticeable
increase towards the end of the data run. This may indicate a rising
pattern in drought conditions that may be associated with both natural
climatic cycles and human impacts. Compound events (Heatwaves and
droughts), represented by red squares with asterisks, keep increasing
over time, especially since the 1980s. The simultaneous occurrence of
these phenomena is especially worrying, as they increase the likelihood of
negative effects on ecosystems and human society. The visual data shows
that some years had consecutive occurrences of high heat or drought, while
other years were comparatively mild. Interannual variability is crucial
for resource management, emphasising the necessity for strong adaptive
techniques to deal with extreme conditions and unpredictability.

4.4 Markov chains of extreme climate events

44.1 Markov Chain transitional probabilities

An in-depth comprehension of the state transitions that occur between
heatwaves and drought conditions is being obtained through the applic-
ation of Markov Chains in the analysis of climatic data. The calculation
of Markov chain Transitional Probabilities allows for a systematization of
the results reached in the previous section for the all area. In each of the
states ("10’, '01”, "11’, and "00’), the presence of a heatwave, drought, both,
or neither is the binary representation of the situation. The odds of trans-
itioning from one climatic condition to another have been computed using
transition matrices, which provide a descriptive and predictive perspect-
ive on the dynamics of climate. The graphs represent transitions from
the first month sixth months. For example, transitions to the "11” state
(both heatwave and drought) are not frequent, which means the occurrence
of these two conditions known as compound events does not occur fre-
quently. Conversely, transitions to the '00” state (no heatwave, no drought)
are more frequent. The state stability analysis uncovers those certain states,
like "00’, exhibit a higher degree of stability, with a greater likelihood of re-
maining in the same state over consecutive time steps. This suggests a
natural climatic resilience against extreme events such as heatwaves and
droughts. Across all the state transitions, certain paths are not common. In
the transition between heatwave month and compound event month
is very weak in the if even there is existence. If the current month is in
either the "10’ or “11’ state the next closet transition, 3rd, and 5th transitions
have no probability of moving between these two states.
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State Transition Diagrams Over 6 Months Using Heatwave and Drought (SPI-12) (lat 41.25, lon -0.25)
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Figure 4.13: Markov chain demonstrating probability of changing to another state
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Figure presents the in-depth analysis of the SPI-12 six-month
Markov chain transition probabilities provided significant insight into the
climate system’s shifts between various states which encompass ‘00" (no
heatwave/no drought), ‘01" (drought without heatwave), ‘10" (heatwave
without drought), and 11" (both heatwave and drought). While the ‘00’
state, indicative of no extreme weather conditions, is the most favourable
for living, the primary focus of this analysis lies in understanding the
dynamics and probabilities of the system transitioning to the other. The
system has a strong tendency to remain in the ‘00" state, indicating a high
level of natural resilience and stability. In the first month, the probability of
maintaining this state is exceptionally high at 0.9205 if the current state
is ‘00". This reflects a robust starting point of stability. Although this
probability exhibits a slight decrease over the six-month transitions, it
remains consistently high, settling at 0.8616 by the end of the sixth month.
This enduring trend towards the ‘00" state signifies the system’s inherent
resilience and a strong tendency to remain in the most favourable state,
despite potential disruptions to shift to other states. The current month
with no extreme effect tries to maintain itself with a high probability
between 0.9205 and 0.8616, showing that when the current state is ‘00" the is
a higher probability of maintaining the same state in the upcoming months.

The system shows several vulnerabilities to transitioning to other states,
each of which represents more severe climate conditions. In the case of
the ‘01" state, which represents drought conditions without a heatwave,
the first-month transition presents a relatively significant probability of
transitioning from the ‘00" state, standing at 0.0412. This suggests an
initial vulnerability to drought within the system. However, as the
months progress, this vulnerability appears to increase, with the transition
probability to the ‘01" state dropping to 0.0899 by the sixth month. This
trend could indicate if the current is not experiencing any extreme climate
conditions, there is a bit of a chance of close to 9 percent in the sixth month.

Transitions to the “10” state from the normal month condition, represent-
ing heatwave conditions without a drought, were less prevalent initially
but showed a gradual increase as time progressed. Notably, by the end
of the sixth month, the probability of the system transitioning to the ‘10
state from the ‘00" state reached 0.0399. The transition probabilities for the
compound event state, “11’, representing both heatwave and drought con-
ditions, remained consistently low throughout the six-month transitions.
Starting from a mere risk of 0.0014 in the first month, the probability re-
mained low, reaching 0.0086 by the end of the sixth-month transition. These
show that it is almost not possible for the climate conditions to transit from
‘00" states to compound events ‘11" and needs some intermediate trans-
itions which are ‘01" and “10". For the current state to be ‘01’, the system
starts with a probability of 0.7203 in the first month to remain in the same
state. However, this probability decreases to 0.4322 by the sixth month.
Transitions within state ‘10" are initially less common, with a probability
of 0.1714 in the first-month shift. However, this probability increases over
time, reaching a significant 0.1212 by the sixth month. This trend indic-
ates that heatwave months do not show a higher probability of maintaining
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the same climate conditions with time but maintaining the extreme event
with a probability between 0.1714 and 0.1212 is still a threat due to the con-
sequence of this event.

The transition probabilities within state 11, representing the simultan-
eous occurrence of both heatwave and drought, also fluctuate. Starting
from a 0 probability in the first month, the probability reaches 0.1667 in
the fourth and sixth months, indicating sporadic occurrences of both con-
ditions. In terms of transitions between these states (“10’,/01","11"), the prob-
abilities vary. For instance, the probability of transitioning from state 01 to
state 10 in the first month is 0.0254, which decreases to 0.0169 by the sixth
month. The transition from state 10 to state 11 sees an increase from 0 in the
first month to 0.0286 in the fourth month, before dropping to 0 again by the
sixth month. This analysis follows similar pattern as in the SPI-6 Figure{4.14]

4.4.2 Spatial correlation of Markov states

Heatmaps of state transitions

It is less likely that a heatwave will occur if the same heatwave condition
is maintained exclusively inside the shift throughout any of the succeeding
six months. There are geographical locations that are comparable to one
another that demonstrate a strong sign of transition throughout the first
two months of the transition and during the final month of the transition.
Throughout the remainder of the month, there are few dispersed regions
that display strong transitional signals, and the indicators are weak. On the
other hand, when it comes to the transition to other states, the drought that
occurred during the heatwave month demonstrates only relatively minor
and noticeable alterations during the first month of transition, while the
next months exhibit clear indications of transition.
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Figure 4.15: Heatmaps of State Transitions.
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The transition from compound events to heatwave events without
drought has a very low probability of occurring in geographical areas that
are geographically distant from one another and that exhibit strong signals
of change. On the heatmap, the first and second months of transition show
absolutely no sign of transition. However, as the number of transition
months grows, the density of changes shows a little increase. During
the transformations that occurred in the late months, only a few areas
indicated a stronger transition. During the shift, the change from months
with only drought from the same compound event month to months with
drought is relatively similar throughout all of the months. On the other
hand, the transitions are not particularly powerful, but the most recent
three months appear to be stronger than the months that came before
them. Generally speaking, with regard to Figure . 15/and from State '11’ to
‘00" the probability of transitioning from a month with compound events
to a month with normal events and no severe events is extremely low.
Additionally, some random places can display these transitions. In the first
two months, this adjustment appears to be quite difficult to accomplish.

4.5 Hamming distance to assess spatial conditions of
extreme events

After applying the Hamming distance to assess how each pair of grid
points is strongly connected, their pattern simultaneously occurs. The
weight of each line between the pairs of grid points is determined by how
strong they behave similarly which is the inverse of the hamming distance
since it measures dissimilarity.

Inverse Hamming Distances between Gridpoints in year ranges and Thresholds

1951 - 1975, Threshold >= 99.00% 1951 - 1975, Threshold >= 99.90% 1951 - 1975, Threshold >= 99.99%
TN TRl g~ - T = Lgos

4

2002 - 2022, Threshold >= 99.00%

Figure 4.16: Inverse of Hamming distance between pairs of grid-points grouped
by years
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Figure 4.17: Inverse of Hamming distance between pairs of grid-points from 1951-
2022

Figure assesses the similarity of extreme climate events, between
different regions in the Iberian Peninsula. (Row 1, Left) Graph with the
cumulative similarities between 1951 and 1975, (Row 2) between 1976 and
2001, (Row 3) between 2002 and 2022, and the total time 1951-2022.
(First col, Top) Graphs showing the 99.00% highest similarities, (2nd col)
the 99.9% highest similarities and (3rd col) the 99.99% highest similarities.
Figure assessing the similarity of extreme climate events, between
different regions in the Iberian Peninsula in decades. (Row 1) Graph with
the cumulative similarities between 1951 and 1960, (Row 2) between 1961
and 1970, (Row 3) between 1971 and 1980, (Row 4) between 1981 and

48



1990, (Row 5) between 1991 and 2000, (Row 6) between 2001 and 2010 and
(Row 7) between 2011 and 2022. (First Col.) Graphs showing the 99.00%
highest similarities, (2nd Col. Mid) the 99.90% highest similarities and (3rd
Col., Last) the 99.99% highest similarities. Figure [4.19 has similar positions
in terms of the degree of similarities and it is assess the extreme climate
event similarity in terms of seasons (Row1: Winter, Row2: Spring, Row3:
Summer and Row4: Fall) The similarities are measured by the inverse
of the corresponding Hamming distance between each two geographic
locations. Blue dots represent grid points, whereas red edges represent the
similarity “strength” between pairs of points. The collection of visual data
in the graphs represents a profound analytical observation of the evolution
and interconnection of extreme climate event similarities across the Iberian
Peninsula, spanning over seven decades. This dataset is instrumental
in illustrating not only the distribution of these events across distinct
geographical nodes but also in deciphering the temporal shifts in climatic
patterns. Using the inverse Hamming distance as a measure of similarity
between geographic locations offers a quantifiable and scientific method to
explore these intricate relationships in climate variability.
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Figure 4.19: Inverse of Hamming distance between pairs of grid-points Different
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The spatial and temporal dynamics of climate event similarities depic-
ted in the figures underline three notable trends: close proximity correla-
tions, the expansion of similarity clusters over time, and a decreasing in-
tensity of these similarities. Figure shows extremely strong connec-
tions in pattern in the earlier decades, there is a likelihood of creating dis-
continuities at the transition points because the ERA5 historic data was pro-
duced by running several parallel experiments for each different period,
which is then sliced into the final product [155].

Close Proximity Correlation and Its Implications

The observed trends across all time frames are noticeable for the strong
climate event similarities in areas within close geographic proximity. This
underlines the principle that close grid points often share microclimatic ele-
ments and localized environmental factors, such as topography, vegetation,
and soil types, which have a direct impact on climate events. The intensity
of these events, ranging from heatwaves to drought, is thus closely inter-
linked within these zones.
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Expansion of Similarity Clusters Over Time

A remarkable expansion of similarity clusters from early (1951) to recent
(last decade) periods is noted. Initially, clusters were small and localized;
however, they have progressively spread to cover larger regions. This
pattern suggests a significant shift in the behaviour of extreme climate
events, potentially due to changes in regional weather patterns, alterations
in global atmospheric circulation, or the effects of climate change. The
increased spread might also reflect improvements in data gathering
and observational techniques, allowing us to recognize climate event
similarities that were previously undetected.

Decreasing Intensity of Similarities and Diversification

Despite the growing geographical coverage of climate event similarities,
their intensity seems to be diminishing. This implies a diversification
in climate behaviour and a more heterogeneous climate system. Various
factors could contribute to this shift, such as diverse local responses to
global warming, human alterations of land surfaces, and changes in sea
surface temperatures influencing weather patterns.

Graph Density and Degree of Similarity Analysis

Considering the graph density, the initial decades (1951-1980) show an
intense network of climate correlations, as illustrated by the 99% similarity
threshold. This density denotes synchrony in climate events across
numerous locations, possibly due to overarching climatic influences. As
we progress towards the 99.9% and 99.99% thresholds, a clear reduction in
graph density emerges. These levels filter out all but the most pronounced
climatic correlations, indicating either persistent microclimates or areas
exhibiting heightened resilience to climate variability.

Evolving Climate Event Patterns

The 99% threshold initially displays the most extensive climatic connec-
tions. Over time, these connections spread but become less dense, indic-
ating a broadening impact of extreme climate events within a more com-
plex and interconnected climate system. At the 99.9% threshold, extreme
climate events become less common, pointing towards a climate system
with less predictability and increased variability in the occurrence of ex-
treme events. Finally, within the strict 99.99% threshold, the figures show
that while the frequency of extreme similarities decreases, the geograph-
ical spread of such events increases. This suggests that extreme events are
not only becoming more geographically widespread but also more unique
in their characteristics. In summary, these results show changing patterns
of similarity in extreme events. Early periods were characterized by loc-
alized, intense climate event similarities, which have since evolved into a
more complex web of climate dynamics with broader impacts and less pre-
dictability. This highlights the importance of adapting our understanding
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and response to climate variability in the face of ongoing environmental
changes.

A changing climate in the Iberian region is characterized by the
observed increase in number of heatwaves and droughts over the research
period. Global trends of rising temperatures are consistent with the
considerable increase in heatwaves, especially in the last two decades of
the 20th century and the first two of the 21st [29, 32]. This temporal
trend points to a possible escalation of catastrophic weather occurrences
in the area, which might have profound effects on human communities
and ecosystems [40]. The unique seasonality of heatwaves, which
mostly happen in the summer, is in line with predictions derived from
climatological norms. The sporadic events in the spring and fall, however,
suggest that seasonal trends are not always consistent. A possible change
in seasonal precipitation patterns may be indicated by the rising frequency
and length of drought months, especially near the conclusion of the data
set [16]. This could have an impact on agricultural practices and the
management of water resources.

The Markov Chain analysis highlights the relationship between temper-
ature extremes and drought conditions and offers insightful information
about the probabilistic transitions between various climatic states. Poli-
cymakers and stakeholders can improve resilience and adaptive capacity
by anticipating and preparing for future climate fluctuations by knowing
the possibility of shifting between these states. The visualizations high-
light areas more vulnerable to extreme weather events by showing the spa-
tial distribution of heatwaves and droughts throughout the region. The
spatial clustering of these phenomena that have been observed emphas-
izes the necessity of focused interventions and tailored adaptive techniques
to lessen the effects of these phenomena on communities and ecosystems.
Compounded events heatwaves and droughts occurring simultaneously
are becoming more common, which presents unique difficulties for envir-
onmental management and policy [39]. These occurrences intensify the
detrimental impacts on human societies and ecosystems, highlighting the
significance of multi-sectoral adaptation strategies and integrated risk as-
sessment.

With a special emphasis on the connection between heatwaves and
droughts, the Markov Chain approach provides insightful information
about the probability transitions between various climatic states. These
transition probabilities between different climatic states drought without
heatwaves ('01’), heatwaves without drought ("10"), and both heatwaves
and droughts ("11’) are shown by the analysis. The system is naturally
resilient and stable despite adverse weather conditions, as evidenced
by the high probability of staying in the ‘00" state. This implies that
the climate in the area is generally steady, with little tendency toward
extreme occurrences [40]. However, there are clear signs of susceptibility to
changing into more extreme climate states ("01’, "10’, or "11”). The analysis
in time indicates a possible escalation of drought risk in the region by
showing that the initial vulnerability to drought conditions ("01") gradually
grows. As a further illustration of the growing likelihood of heatwaves, the
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probability of changing to heatwave conditions ("10") likewise rises with
time.

According to the data, the likelihood of moving towards compound
events ("11’), in which heatwaves and droughts occur at the same time,
is consistently low during the study. This implies that although isol-
ated severe occurrences might happen, compound events happen less fre-
quently. The transition probabilities exhibit temporal fluctuations, signify-
ing changes in the probability of encountering distinct environmental con-
ditions throughout time. It is essential to understand these temporal dy-
namics to plan for future climate fluctuations and to create adaptive meth-
ods that lessen the effects of catastrophic weather occurrences [42]. The
results of the Markov Chain analysis have significant ramifications for ef-
forts to increase resilience and adapt to climate change. Policymakers and
other stakeholders can improve adaptation capacity and lower the risks
connected with extreme weather occurrences by identifying vulnerabilities
and possible trajectories of climate states.

The heatmaps of state transitions illustrate the results of the spatial
correlation analysis of Markov states, which provides information about
the geographic patterns of transitions between various climatic states. The
analysis focuses on the shift from heatwaves to droughts and vice versa. It
is less likely for a heatwave to last for the entire six months that follow,
according to the heatmap showing state transitions from one heatwave
month to the next. This implies that the persistence of heatwave conditions
exhibits some degree of variable and spatial variation [43]. Heatwaves are
more likely to persist or fade over time in geographic areas with significant
transitional signals during the first and last months of the transition period
[104]. The transitional signals, on the other hand, are less strong and more
scattered during the intermediate months, indicating higher variability
in heatwave persistence [16]. When looking at changes from months of
heatwaves to months of droughts, the heatmap shows comparatively small
but noticeable changes in the first month of the shift, with more distinct
signs of transition in the months that follow. Therefore, implies that the
change from heatwave to drought conditions can happen gradually over
time, with the first month acting as the start of the transition and the
subsequent months showing more noticeable alterations.

The results demonstrate that there is extremely little chance of mov-
ing from compound events both heatwave and drought to single extreme
events either heatwave or drought, especially in remote locations. Accord-
ing to the heatmap, there are not many changes during the first two months
of the transition phase, with the density of changes gradually rising. This
suggests that the shift from compound occurrences to single severe events
could be difficult and less frequent, particularly in the early phases of the
shift.

Understanding the trends and development of extreme climatic events
throughout the Iberian Peninsula is made possible by analyzing the
spatial-temporal distribution of similar climate events and the Hamming
distance. The great degree of climate event similarity between adjacent
locations that have been found highlights the important significance that
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geographic proximity plays. These relationships are influenced by specific
environmental conditions and shared microclimatic features, which can
affect occurrences such as severe rains and heatwaves [105]. The results
show that similarity clusters have grown over several decades, suggesting
a change in the behaviour of extreme weather events. This extension
shows that weather-related extremes are caused by variables that go
beyond traditional territorial borders. These factors may include shifting
regional weather patterns and global atmospheric circulation [106, [107].
Similarities between climate events become more spatially widespread, but
their strength diminishes over time, indicating a change in the patterns
of climate. This implies a wider range of intensities for climate events,
perhaps impacted by different local climate reactions to global warming
and alterations in land surfaces because of human activity [108]].

A decrease in graph density is observed as similarity thresholds
are raised, suggesting a transition toward a climate system with more
isolated but strong similarities between climate events. This implies a
process of selection in which only the strongest climate associations hold
true, indicating regions that are resilient to shifting climate conditions or
persistent microclimates [8]. The filter isolates the most extreme climate
events, which become less frequent over time, at higher thresholds. This
suggests that the climate system is changing such that extreme event
manifestations are becoming less predictable and more variable.
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Chapter 5

Conclusion

5.1 Introduction

This concluding chapter provides an opportunity to reflect on the findings
of this research and discuss their implications. It brings together the major
insights gleaned from the research, reflecting on the connections between
heatwaves and droughts in the Iberian Peninsula. Furthermore, it delves
into the potential impacts of these findings on climate adaptation and risk
management strategies. This chapter also acknowledges the limitations of
the study, proposes recommendations for future research, and discusses the
potential directions for future work. Through this synthesis, this chapter
aims to underscore the value and relevance of this research in contributing
to our understanding of climate patterns and their impacts.

5.2 Summary of Findings

The thesis has offered a wealth of knowledge regarding the statistical
relationships between heatwaves and droughts in the Iberian Peninsula.
Some of the key insights obtained from the analysis of the data are as
follows:

* The relationship between droughts and heatwaves in the Iberian
Peninsula is characterized by a complex interplay, with both extremes
showing a tendency to increase over time, especially noted in the later
decades of the 20th century and early 21st century. This relationship
is emphasized by the rising frequency and intensity of heatwaves,
aligning with global warming trends, and an increase in the duration
and frequency of drought conditions, possibly driven by changes in
precipitation patterns and increased evapotranspiration.

* Seasonally, the influence on the climate system in the Iberian Pen-
insula varies, with heatwaves predominantly occurring during the
summer months, as expected, but also showing sporadic instances
during spring and fall. This suggests a broadening of the window
in which heatwaves can occur, potentially linked to the overall rise
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in temperatures. Drought conditions, similarly, appear to be influ-
enced by seasonal shifts, with potential implications for water re-
source management and agricultural scheduling.

¢ In terms of transitioning probabilities between climatic conditions,
the Markov Chain analysis illustrates that while the baseline state
(normal conditions) is relatively stable, there are clear pathways
to more extreme states. Transition from normal to drought or
heatwave conditions shows a gradual increase in likelihood over
time, indicating a shifting baseline towards more frequent extreme
conditions. Conversely, transitions from compound extreme events
(simultaneous droughts and heatwaves) back to normal conditions
are relatively rare, suggesting that once extreme conditions set in,
they can be particularly persistent and challenging to revert. This
understanding of transition probabilities is crucial for developing
adaptive strategies and resilience planning in response to climate
variability and change in the Iberian Peninsula.

5.3 Implications of the Research

The findings of this study not only contribute to the existing body of
knowledge but also have potential implications for a broader context.
These implications could affect policy decisions, shape future research,
or even alter current practices. In this section, we will delve into the
possible applications of our research findings for both practitioners and
policymakers in the field.

The insights generated from this study can be leveraged by policy-
makers and planners to enhance the resilience of infrastructures and com-
munities, enabling them to withstand extreme climatic events more ef-
fectively. The probabilistic models developed in this research can be
instrumental in forecasting and preparing for potential future scenarios
of droughts and heatwaves. A deeper understanding of the interaction
between these extreme events can contribute towards more efficient water
resource management and agricultural planning during periods of risk.

5.4 Recommendations

Considering the findings of this study, the following recommendations are
proposed:

¢ Future studies should aim to build on this research by incorporating
additional climatic variables that could potentially influence or be
influenced by heatwaves and droughts.

¢ There is a necessity for the development of localized models that can
predict extreme weather events for specific regions within the Iberian
Peninsula, considering their unique geographical features.
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¢ Investment in climate data collection and monitoring tools should be
increased to enhance the accuracy and reliability of future studies.
Which can be amplified to a larger area.

5.5 Limitations of the thesis

Despite the rigorous methodologies and substantial findings, this study,
like all research, is not without its limitations. It is important to
acknowledge these constraints as a guide for future research and a lens
through which to view the results. The following are some of the limitaions:

* The research was limited to the analysis of reanalysis data, which
may contain inherent biases or errors. The ERA5 historical data was
generated through parallel experiments for different periods, which
were later combined, potentially leading to discontinuities at the
transition points, especially from the earlier years to 1979 [155].

* Anotable constraint of this index mainly used (SPI) is its considerable
sensitivity to variations in the duration of distinct statistical periods
(156 [157].

* Although the Markov Chain provides a good basis for understanding
the transitions between various states, it assumes that past conditions
are reliable predictors of future states. This assumption may not
always be valid, especially in the context of rapidly changing climate
conditions.

5.6 Future Work

While this study has provided valuable insights into the relationship
between heatwaves and droughts in the Iberian Peninsula, it also opens
up new avenues for future research. These potential directions are not
only extensions of this research but also opportunities to delve deeper
into unexplored aspects or address questions that have arisen from our
findings. Some of the potential areas that future studies could explore to
further enhance our understanding of this complex climatic interplay are:

* Investigate the impact of global climate change trends on the
frequency and intensity of droughts and heatwaves.

¢ Consider integrating more sophisticated statistical methods or ma-
chine learning models to predict extreme events with higher accur-

acy.

* Conduct a detailed examination of the socio-economic impacts of
these extreme events on the Iberian Peninsula, with a particular focus
on sectors such as agriculture and public health.
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* Also to find the mechanisms that drive the relationship between
droughts and heatwaves, and how can this be used to develop
adaptation and mitigation strategies.
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